Demystifying Cholesterol

Cholesterol, an animal sterol, is a waxy substance found in every cell in our body. Cholesterol is used as a base for the production of steroid hormones, bile salts, and vitamin D as well as maintaining cell membrane fluidity. Without cholesterol we would not be able to properly digest foods, our cell structure would not be able to withstand any changes in temperature, and a significant number of important hormones such as estrogen, and testosterone could not be produced.

Our cholesterol is produced in the liver, from the molecule acetyl-coenzyme-A, through a number of complicated reactions that I won’t bore you with. A key step is a conversion that is controlled by the enzyme HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase. This enzyme can block the production of cholesterol making it an important target for cholesterol lowering drugs called statins, but it also controls the production of many other molecules such as co-enzyme-q10. That’s why there are so many side effects of taking these drugs. Nearly 10-12% of patients on statin drugs will experience statin induced muscle pain. Other potential adverse reactions to statin drug use include elevated liver enzymes, lung disease, and in a small subset of patients can even increase risk for Type 2 Diabetes Mellitus.

But back to cholesterol synthesis. The majority of cholesterol is synthesized, recycled, and degraded in the liver. So how does the water fearing cholesterol molecules that you eat get to the liver from the gut? And then how does it go from the liver to the cells if it cannot travel through the bloodstream alone?

Well, first cholesterol molecules are transported to the liver via the lymph in complexes called chylomicrons. When it gets to the liver it is repackaged and the cholesterol is “chaperoned” around the body by the lipoprotein complexes. There are a number of lipoprotein complexes, which are classified based on the ratio of proteins to fat and cholesterol. Think of these as cholesterol carriages, moving it all around the body. LDL takes the cholesterol to tissues and HDL brings cholesterol back to the liver when we have too much. Low density lipoproteins (LDL), very low density lipoproteins (vLDL) and chylomicrons all have very high fat and cholesterol content as compared with the protein rich high density lipoprotein (HDL). Once packaged into vLDL, the cholesterol enters circulation and some of the cholesterol is deposited to the tissues along with fatty acids. Once it drops the cholesterol off, the LDL complexes should be taken up by liver cells after attaching to the LDL receptor on their surface. Meanwhile, HDL scavenges blood vessels and tissues for free-form excess cholesterol. It then returns to the liver where cholesterol can be excreted through the bile or recycled.

Cholesterol and Cardiovascular Health

High cholesterol, triglycerides, LDL, and trans fats are linked to increased risk of cardiovascular events such as heart attacks and strokes. Cholesterol can build up due to increased production, increased consumption, or decreased excretion. The cause of the build-up as well as the form of cholesterol in the plasma is important when determining risk and treatment.

Genetic disorders can affect the LDL receptors in the surface of liver cells causing an increased amount of LDL in circulation. High LDL levels in circulation lead to an increased risk of cardiovascular events irrespective of diet and lifestyle in these patients. However, genetic causes affect a small percent of the population diagnosed with high cholesterol. The majority of cases in North America can be linked to diet and lifestyle.

Increased consumption of cholesterol rich foods result in increased levels of LDL in circulation. Excess LDL-C can attach onto and infiltrate the walls of blood vessels. When the LDL infiltrates it will form a reactive oxidative species that will attract immune cells. From the complexes formed, more white blood cells will congregate and an inflammatory cascade will be initiated. As more and more cells are attracted to this middle layer of a blood vessel, the plaque will begin to disrupt blood flow and may eventually fully block the vessel, or a piece of the plaque can rupture and travel around the body. All of these scenarios can have very serious consequences.

The “arthrogenic triad” are lab findings that show an increased risk for the development of atherosclerosis (or hardening of arteries) this includes high serum LDL, low HDL and high triglycerides. Risks are increased with low fiber diets as this prevents the excretion of cholesterol. A somewhat inactive lifestyle can also increase the risk of the LDL adhering to the vessels.

Procrastination

THE MISCONCEPTION: You procrastinate because you are lazy and can’t manage your time well.

THE TRUTH: Procrastination is fueled by weakness in the face of impulse and a failure to think about thinking.

Want never goes away. Procrastination is all about choosing want over should because you don’t have a plan for those times when you can expect to be tempted. You are really bad at predicting your future mental states. In addition, you are terrible at choosing between now and later. Later is a murky place where anything could go wrong...

If you fail to believe you will procrastinate or become idealistic about how awesome you are at working hard and managing your time, you never develop a strategy for outmaneuvering your own weakness.

Procrastination is an impulse; it’s buying candy at the checkout. Procrastination is also hyperbolic discounting, taking the sure thing in the present over the caliginous prospect someday far away. You must be adept at thinking about thinking to defeat yourself at procrastination. You must realize there is the you who sits there now reading this, and there is the you some time in the future who will be influenced by a different set of ideas and desires; a you for whom an alternate palette of brain functions will be available for painting reality.

The now-you may see the costs and rewards at stake when it comes time to choose studying for the test instead of going to the club, eating the salad instead of the cupcake, writing the article instead of playing the video game. The trick is to accept that the now-you will not be the person facing those choices, it will be the future-you—a person who can’t be trusted. Future-you will give in, and then you’ll go back to being now-you and feel weak and ashamed. Now-you must trick future-you into doing what is right for both parties. This is why food plans like Nutrisystem work for many people. Now-you commits to spending a lot of money on a giant box of food that future-you will have to deal with.

What Enzymes Does Mercury Inhibit?

Mercury is a heavy metal that has been used for centuries as a medicine and a poison. Common exposures come from contaminated seafood, dental amalgams, and vaccines for infants. Mercury can exist in 11 different chemical states or compounds. At the molecular level, it forms bonds with sulfhydryl groups on an enzyme, which are parts of the enzyme that contain a sulfur atom that is attached to a hydrogen atom (SH). Binding of mercury can change the shape of the enzyme and block its activity. Enzymes inhibited by mercury include acetylcholinesterase, catalase, dipeptyl peptidase (CD26), amylase, lipase, lactase and glucose-6-phosphatase.

Acetylcholinesterase

Acetylcholine is one of the main neurotransmitters that nerves use to control muscle movement. After release, acetylcholine must be degraded in order to stop the “go” signal from continuing to stimulate the receiving cell. Acetylcholine is degraded by an enzyme called acetylcholinesterase. This enzyme is found in the synaptic cleft, which is the space between the "fingertips" of a nerve cell and the neighboring cell that the nerve activates. Mercury inhibits this enzyme differently in different species, depending on whether it can easily find a sulfhydryl group to latch onto. For human acetylcholinesterase, it takes millimolar amounts of mercuric chloride (HgCl2) to inhibit the enzyme.

Catalase

Catalase is an enzyme that converts hydrogen peroxide into water and oxygen. Hydrogen peroxide is regularly produced by cells as they make energy in a process called cellular respiration. Hydrogen peroxide is toxic at high levels, so cells get rid of it via the enzyme catalase. Though it is widely known that mercury inhibits catalase, it may do so by binding to sites other than sulfhydryl groups. It is interesting to note that when a person absorbs elemental mercury, which causes brain damage, catalase is the enzyme in the red blood cells that converts elemental mercury into an ionic form (mercuric salt).

Creatine Kinase

Mercury also inhibits the enzyme found in skeletal muscle called creatine kinase. Muscle cells contract by using an energy molecule called adenosine triphosphate (ATP), a molecule with three -- thus the “tri” prefix -- phosphates. Energy is released for an enzyme when the enzyme grabs ATP and breaks off one phosphate, resulting in adenosine diphosphate (ADP) -- “di” means two. A quick way of making ATP is to take a phosphate from a sugar molecule called phosphocreatine and add it to ADP. Creatine kinase is the enzyme that recharges ADP into ATP in this way. Mercury inhibits creatine kinase in several ways. Mercury blocks creatine kinase’s ability to bind ADP or the magnesium ion that the enzyme needs in order to function properly.

Digestive Enzymes

Mercury binds to sulfhydryl groups, which is found on the amino acid cysteine. Since cysteine is a common amino acid in many enzymes, mercury inhibits a whole host of enzymes. The "Journal of Applied Toxicology" reported the effects of inorganic mercury in the liver tissue of freshwater fish. Mercury inhibited many enzymes involved in digestion of food molecules, such as protein, carbohydrate and fat: amylase, lipase, lactase and maltase. Mercury also inhibited glucose-6-phosphatase, an enzyme involved in the production and export of glucose in cells.

A Heads-Up Look at Brain Health

Medical advances of today and the very near future — gene therapies, nanotechnology, targeted monoclonal antibodies, cloning, and more — will allow us to “repair” or “replace” damaged and diseased body parts and raise the average life expectancy to 100 years or more. The problem with this magnificent advancement is the studies which suggest that 40% of those reaching 85, and nearly 100% of those reaching 120, will be senile. Of what use is living to a ripe old age if we cannot enjoy it, or even be aware that we’re alive?

Brain Studies

Some 2000 years ago the ancient Greeks attributed all behavior to four temperaments: Hot, Dry, Moist, and Cold. The Romans attributed all symptoms and behaviors to four body fluids, which they called humors: Phlegm, Yellow Bile, Black Bile, and Blood. While Hippocrates, Galen, and hundreds of others slowly advanced the understanding of human anatomy and physiology, the brain sat unstudied for over 1500 years. It was not until the 18th and 19th centuries that brain anatomical science progressed to the point that four distinct lobes were identified, with specific behaviors and body functions ascribed to each.

Over the next 100 years, biochemical and pharmaceutical researchers discovered four separate brain chemicals, called neurotransmitters, that were used by the brain. Somewhat later, four distinct brain waves, or patterns of electrical activity, were discovered and correlated with specific lobes in the brain. Only fairly recently have researchers started to understand this most mysterious organ.

From the 1950s to present, psychiatrists and phychologists have described four broad classifications of human behavior: extroverted or introverted, intuitive or sensing, thinking or feeling, and perceiving or judging. If you suspect that these four primary behaviors can be assigned to a specific lobe, you’d be right!

Brain malfunctions, as manifested by psychiatric problems or unacceptable behavior, can be largely attributed to an imbalance of neurotransmitters within the brain. Unfortunately, discovering these levels within a living brain was not an easy task. (If you think a spinal tap is a risky procedure, just imagine a “brain tap” gone wrong!) What was needed was a simple, noninvasive test to measure the levels of neurotransmitters in a functioning human brain. Various scans of the brain can be employed, but they cannot show actual brain function. For example, an MRI of a patient’s brain right before death and right after death would be identical.

After 25 years of painstaking work, neurological researchers have finally uncovered a long-hidden piece of the puzzle — the relationship between the brain’s chemicals and the brain’s electricity. This discovery allowed clinicians to diagnose brain dysfunction with a simple, noninvasive assessment of the brain’s electrical activity. By measuring the four electrical components of brain activity, doctors can determine the levels of the four neurotransmitters and initiate treatment protocols to correct a deficiency of one or more of them.

Correlation Times Four

Four temperaments; four humors; four neurotransmitters; four lobes; four classes of human behavior; four brain waves; four electrical measurements of brain function. How do these relate? The following table shows the relationship between brain lobes, neurotransmitters, behaviors or personality types, and electrical measurements.

The table above shows the electrical measurements used to determine neurotransmitter levels. As a person ages, his brain goes through a slow decline, or “electropause,” in which the voltage, speed, rhythm, and synchrony change. By measuring these four electrical characteristics, a person’s “brain age” can be determined, which may be younger or older than typical for his chronological age. More importantly, a deficiency in one or more neurotransmitters can be detected and steps taken to restore normal levels.

A computerized diagnostic device called a Brain Electrical Activity Map (BEAM) measures these four values and creates a “picture” of the brain’s electrical activity. It records and tracks the progression of the positive wave created in the brain by an external stimulus, such as a sound (auditory evoked potential) or a flash of light (visual evoked potential).

Speed. A “normal” brain takes about 300 msec (milliseconds) plus a person’s age in years to “think.” This is the measurement of the time delay, or latency, between a stimulus given and the recognition of that stimulus in the brain. As the latency increases (speed decreases), a person moves from mild cognition deficits to severe dementia.

Voltage. A “normal” brain creates an electrical potential of about 10 µv (microvolts). The voltage generated in a person’s brain is related to his ability to concentrate, and low voltage can result in memory impairment, obesity, addictions, or schizophrenia.

Rhythm refers to the regularity of a person’s brain waves. Like cardiac rhythm, the more smooth the rhythm, the better. Brain-wave arrhythmias yield a spectrum of disorders from anxiety and recurring headaches to manic depression and seizures.

Synchrony is a comparison of the electrical activity in each of the hemispheres of the brain. It is common for a person to be dominant in one hemisphere or the other, but a severe imbalance in the electrical activity of the right vs. left hemisphere can lead to sleep disorders, IBS, somatization disorders, or phobias.

Acetylcholine

Review: A “normal” brain takes about 300 msec (milliseconds) plus a person’s age in years to “think.” This is the measurement of the time delay, or latency, between a stimulus given and the recognition of that stimulus in the brain. As the latency increases (speed decreases), a person moves from mild cognition deficits to severe dementia.

Acetylcholine-associated disease states

A diagnostic evaluation of a person’s brain speed can give objective evidence of disturbances in cognition, memory, attention, and behavior. After subtracting the patient’s age, the baseline latency measurement indicates the following: 300 msec is “normal”; 350 msec indicates mild to moderate disturbances in cognitive function (“muddled thinking”); 360 to 370 msec indicates ADD or variability of attention, errors of omission or commission, and delayed reaction time; 380 msec is typically found in Parkinson patients; 420 msec is the threshold for Alzheimer disease, with increasing latency as the dementia progresses. Early detection of deficiencies in the speed at which the brain operates can allow early intervention to slow or reverse the decline, possibly delaying or preventing the onset of Alzheimer and other dementias.

Beyond detecting a frank disease state associated with severe acetylcholine deficiency, physicians can analyze thebalance of the four neurotransmitters to determine a patient’s personality type.

The acetylcholine-dominant personality

Acetylcholine is produced in the parietal lobes, which are responsible for thinking functions such as language processing, intelligence, and attention. People with an excess of acetylcholine (about 17% of the world’s population) are adept at working with their senses and view the world in sensory terms. They are quick thinkers, highly creative, and open to new ideas. Flexibility, creativity, and impulsivity open them up to trying almost anything, as long as it offers the promise of excitement and something new; they are not afraid of failure. They love to travel and have a quest for lifelong learning. These people also tend to be extremely sociable, even charismatic. They love making new friends and put a lot of energy into all of their relationships, whether at work, at home, or in the community. They are eternally optimistic, romantic with their significant other, and attentive to the needs of their children. They are quite popular with a broad range of people. People with extremely high levels of acetylcholine, however, risk giving too much of themselves to others, even to the point of being masochistic. They may feel that the world is taking advantage of them, or they may become paranoid. Too much acetylcholine can drive a person into isolation.

The acetylcholine-deficient personality

Low levels of acetylcholine result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the dementia- producing deficiencies mentioned earlier. These personality traits can, in fact, manifest when the acetylcholine level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one neurotransmitter is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.

The eccentric. The absence of thought connections to other people and the world makes this person’s behavior seem odd. The eccentric usually steers away from human interaction and keeps himself isolated. Outwardly, he appears bland and inexpressive. When even mildly stressed, however, he can become a danger to himself and others.

The perfectionist. This person is usually hard working, detail oriented, devoted, and exacting. Self-discipline is a hallmark of this personality type, which can be either a plus or a minus, depending on the severity of the imbalance and which other neurotransmitter is dominant. This person can be an excellent worker, or he can be rigid and obsessive to the point that nothing is actually accomplished. The perfectionist’s life is usually lacking in enjoyment, relaxation, and warmth, which can make that person unapproachable.

Dopamine

Review: A “normal” brain creates an electrical potential of about 10 µv (microvolts). The voltage generated in a person’s brain is related to his ability to concentrate, and low voltage can result in memory impairment, obesity, addictions, or schizophrenia.

Dopamine-associated disease states

A person’s ability to concentrate can be directly correlated with his dopamine level. A diagnostic evaluation of the voltage in a person’s brain can give objective evidence of disturbances in concentration and memory. Low dopamine levels can be involved in difficulty performing routine tasks, a variety of sexual disorders such as loss of libido or anorgasmy, various addictions, from caffeine to opiates, and decreased physical activity due to fatigue. Obesity is a common result of the combination of sugar cravings and low physical activity associated with suboptimal dopamine levels in the brain.

Brain voltage can vary within the range of 0 µv (dead) to 20 µv (super concentration), with 10 µv being classified as “normal.” The voltage range correlates as follows: 0-2 µv is typically found in cocaine babies; 2-4 µv can indicate severe addictions, severe attention deficit disorder, or schizophrenia; 5-6 µv indicates a chronic brain disorder; 7 µv is found in those with moderate addictive behavior, such as caffeine and sugar cravings; 8-9 µv is typical for mild to moderate memory and thinking disturbances, including mild attention deficit; 10 µv is “normal”; and above 10 µv indicates an increased ability to concentrate, even to the rejection of external stimuli at the high end of the range.

Drugs that increase dopamine levels have been used as adjunctive therapy for schizophrenia and opiate addiction. Beyond detecting and treating frank disease states associated with a severe dopamine deficiency, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.

The dopamine-dominant personality

Dopamine is the source of the brain’s power and energy. People with an excess of dopamine (about 17% of the world’s population) thrive on energy. They are likely to be strong-willed individuals who know what they want and how to get it. They are highly rational, more comfortable with facts and figures than feelings and emotions. They can be self-critical, but do not accept criticism or negative feedback from others. These people function well under stress, focusing intently on the task at hand. They are tireless and typically need less sleep than average. Strategeic thinking, invention, and problem-solving are the hallmarks of these individuals. In their personal lives, they like activities related to knowledge and intellect. They can be competitive in sports, but prefer individualized sports over group sports. They tend to establish personal relationships easily, but may have trouble nurturing them. As highly rational people, they have trouble understanding that many people believe feelings are more important than reason. They have a tendency to want to exert control over their spouse and children, and a successful marriage depends on the loyalty and goodwill of the spouse.

People with extremely high levels of dopamine, however, can be overly intense, driven, and impulsive. They may turn to violence as a way of creating controlled environments of excitement and power. Teens may be driven to shoplifting, street racing, or date rape. Criminals — especially repeat sexual offenders — often have extreme dopamine levels and a heightened libido that frequently accompanies it.

The dopamine-deficient personality

Low levels of dopamine result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the disease- producing deficiencies mentioned earlier. Personality shifts can, in fact, manifest when the dopamine level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.

Dopamine production determines the brain’s power, as measured by voltage. As the voltage becomes suboptimal, the person literally slows down, mentally and physically. Minor deficiencies can produce a range of mental and physical symptoms, such as mild memory loss, mild depression (“the blues”), panic disorder, PMS, insomnia, fatigue, mild hypertension, nicotine addiction, and obesity. Sexual side effects, such as loss of libido and difficulty achieving orgasm, are common among people with a dopamine deficiency.

The previous two neurotransmitters — acetylcholine and dopamine — can be thought of as the brain’s “on” switch, providing energy, power, and speed. The next two — gamma-aminobutyric acid (GABA) and serotonin — function as the brain’s “off” switch, providing calmness, rest, and sleep. A balance of the “on” and “off” neurotransmitters is necessary for proper brain function.

GABA

Review: Rhythm refers to the regularity of a person’s brain waves. Like cardiac rhythm, the more smooth the rhythm, the better. Brain-wave arrhythmias, or dysrhythmias, yield a spectrum of disorders from anxiety and recurring headaches to manic depression and seizures.

GABA-associated disease states

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. It has a calming, stabilizing effect. It controls the brain’s rhythm, which allows a person to function at a steady pace and prevent him from becoming too “hyper.” As the brain’s GABA level declines, brain waves begin to become less rhythmic. This can bring on a multitude of symptoms, both psychological and physical.

Mild brain-wave dysrhythmias can produce anxiety and its accompanying physical manifestations: restlessness, sweating, cold or clammy hands, butterflies in the stomach, and a lump in the throat. Other physical symptoms that can appear with a moderate GABA deficiency include carbohydrate cravings, an abnormal sense of smell, and unusual allergies. As GABA levels further decrease, anxiety can become more pronounced and produce attention-deficit disorders, PMS, flushing, trembling, hypertension, cystitis, and gastrointestinal disorders. At the most extreme deficiency, this can become full-blown panic attacks, manic depression, migraine headaches, hyperventilation, palpitations, tachycardia, blurred vision, tinnitus, twitching, and seizures. Advanced psychological symptoms can include severe delusions, feelings of dread, and a short temper that can progress into full-blown rage reactions and violence. Chronic marijuana and alcohol abuse can signal an acute GABA deficiency.

Beyond detecting and treating frank disease states associated with GABA deficiencies, physicians can analyze thebalance of the four neurotransmitters to determine a patient’s personality type.

The GABA-dominant personality

People with high GABA levels (about 50% of the world’s population) share the common attributes of stability, consistency, sociability, and concern for others. They are nature’s most dependable people. They can be counted on to show up at work every day and be there when others need them. At work, GABA- dominant people are the ones who set goals, organize projects, schedule activities, and keep others on task. Their punctuality, objectivity, practicality, and confidence make them excellent employees. Organization is paramount to them — at work, at home, and in their social life. It’s no wonder that these people gravitate to careers as administrators, accountants, air-traffic controllers, meeting planners, nurses, EMTs, and yes, medical transcriptionists. They’re the ones in the group who stay focused on the matter at hand. They are the consummate team player, both metaphorically and literally. In their personal life, such people derive pleasure from taking care of their family and friends. They can be a serene island in a sea of chaos. Although they like group activities, they cherish one- on- one relationships. Their friends are forever, and their marriage is a long- term commitment. Nurturing and making others happy is their ultimate goal. They tend to be religious and believe in traditions, especially where friends and family are involved, such as holiday gatherings.

As with the other neurotransmitters, it is possible to have too much of a good thing. People who produce too much GABA can be organizational to the point of setting rigid schedules and micromanaging others, whether as a boss, a coworker, a friend, or spouse. Excess GABA can dramatically increase a person’s nurturing tendencies. They can spend enormous amounts of time and energy looking for opportunities to give love and care to others, at the cost of their own needs not being met.

The GABA-deficient personality

Low levels of GABA result when either the brain burns too much or produces too little. Shifts in personality occur at a much milder deficiency than the disease- producing deficiencies mentioned earlier. Personality shifts can, in fact, manifest when the GABA level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.

Unlike a balanced brain that creates energy in a smooth, steady flow, a person with low GABA creates energy in bursts. This brain dysrhythmia can upset the body in a number of ways, but none is more pronounced than in the realm of emotional well- being. Specifically, he can lose the ability to effectively deal with life’s stresses. He may begin to feel nervous, anxious, and irritable. He may demonstrate poor emotional stability, lack impulse control, and resort to childish behavior. It can also manifest as poor verbal memory and difficulty concentrating. Physically, low GABA levels can bring on a variety of subacute conditions such as allergies, transient aches, instability while walking, diarrhea or constipation, and insomnia or hypersomnia. Usually, such physical annoyances occur one after another to the point that a person begins to wonder about his general state of health.

Serotonin

Review: Synchrony is a comparison of the electrical activity in each of the hemispheres of the brain. It is common for a person to be dominant in one hemisphere or the other, but a severe imbalance in the electrical activity of the right vs. left hemisphere can lead to sleep disorders, IBS, somatization disorders, or phobias.

Serotonin-associated disease states

Correlating with delta waves in the brain, serotonin affects your ability to rest, regenerate, and find serenity. Adequate serotonin allows the brain to recharge and rebalance itself each night, so that you can begin each morning with a fresh start. Serotonin is produced in the occipital lobes, which is also the center of sight.

As serotonin levels drop, the right and left hemispheres become desynchronized, producing feelings of being out of control. Moderately low levels can produce depression, mild hypertension, arthritis, poor temperature regulation, sexual disturbances such as premature ejaculation or delayed arousal response, bowel disturbances, mild PMS with emotional outbursts, learning disorders, obsessive- compulsive behavior, and insomnia, which tends to further lower serotonin levels. As levels drop further, hypertension can become uncontrolled, arthritis can intensify, PMS can become severe, and a wide range of perimenopausal symptoms can occur. With a severe shortage of serotonin, physical and psychological disturbances may become life threatening, with bingeing, masochism, severe depression and other serious mood disorders, addictions including alcoholism and drug abuse, somatization disorders, schizoaffective disorders, and schizophrenia with hallucinations. Physically, a severe serotonin deficiency can cause insomnia/ hypersomnia sleep cycles measured in days and increase hypertension to the point of producing a stroke.

Beyond detecting and treating frank disease states associated with serotonin deficiencies, physicians can analyze the balance of the four neurotransmitters to determine a patient’s personality type.

The serotonin-dominant personality

People with high serotonin levels (about 17% of the world’s population) know how to live in the moment. Realistic and impulsive, they are highly responsive to sensory input. They’re active participants in life who thrive on change. They take their vacations at a different spot each year. They try new foods, new hobbies, and new friends, and they have a natural disdain for order, structure, and authority. They’re optimistic, cheerful, easygoing, and the life of the party. A serotonin-dominant person gravitates to trades or professions that offer a variety of tasks, an ever-changing environment, and interactions with different people. Their keen hand-eye coordination makes them well suited to using various tools to accomplish their tasks. Construction workers, truck drivers, military personnel, hairstylists, pilots, surgeons, chiropractors, movie stars, fashion models, photographers, and professional athletes likely owe their skills to ample serotonin levels. Preferred sports can include mountain climbing, hunting, skydiving, hang gliding, scuba diving — just about anything that offers a personal challenge along with a certain level of excitement. They play hard and have the time of their life when doing activities that others would consider too dangerous. In relationships, they can be romantic and passionate, but they also love their independence and often refuse to be tied down. Due to their impulsivity and desire for change, they tend to move away from people before deep relationships develop. In fact, their friendships are typically many and varied — wide instead of deep. They have a fondness for children, but make better aunts and uncles than parents.

As with the other neurotransmitters, it is possible to have too much. An excess of serotonin can make a person extremely nervous. He can become hesitant, distracted, hypersensitive to criticism, and morbidly afraid of being disliked. Excessive serotonin can make a person believe he is inadequate and inferior. Sadness and anger are constant companions, and although he may have a desperate desire for interpersonal interaction, he is too fearful to even make an attempt.

The serotonin-deficient personality

Serotonin deficiency can occur from experiencing too much excitement (thereby metabolizing large amounts of serotonin) and/or not getting sufficient sleep (causing the brain to generate less serotonin). Shifts in personality occur at a much milder deficiency than the disease- producing deficiencies mentioned earlier. Personality shifts can, in fact, manifest when the serotonin level is only slightly lower than the levels of the other three neurotransmitters. And remember, we’re looking at the relative balance of neurotransmitters. A deficiency in one is usually offset by an excess of another, which typically produces the personality traits associated with a dominance of that other neurotransmitter.

A common sign of serotonin deficiency is depression and fatigue. The chronic lack of sufficient sleep means that the brain is unable to rest, regenerate, and resynchronize. This can manifest in the personality as a flat affect (a classic sign of depression) and a lack of pleasure, artistic appreciation, and common sense. The person may become codependent, obsessive- compulsive, or exhibit loner tendencies. He can be impulsive or perfectionistic, painfully shy or masochistic. Someone with multiple phobias is typically serotonin deficient. The frequent use of ecstasy, PCP, and LSD also signals a serotonin deficiency.

Lettin’ the good guys in,
Keepin’ the bad guys out

We have been made with a wonderful mechanism to prevent harmful substances from entering the brain. Not everything that circulates in the blood stream is allowed entry into the brain. There is a barrier between the blood and the brain, logically called the blood-brain barrier, that allows only glucose and certain nutrients selective access to the brain. This membrane protects the brain from toxins and other substances that would cause it damage. It also “holds in” certain substances manufactured by the brain, notably neurotransmitters, that would be lost through diffusion throughout the rest of the body if allowed to pass into the blood stream. Therefore, the same membrane that prevents toxins from passing through also prevents neurotransmitters from passing through. This characteristic of the blood-brain barier is the reason why a Parkinson disease patient, for example, cannot receive an injection of dopamine to restore the dopamine level in his brain and reverse the disease. So the dilemma is how to raise the level of specific neurotransmitters in the brain, when simple supplementation with those neurotransmitters is ineffective.

The answer lies in finding a way to “coax” the brain to produce more endogenous neurotransmitters. It turns out that the answer is fairly simple — give the brain more raw material, and it will make more neurotransmitters. Fortunately, the mechanism by which the brain makes each neurotransmitter is well known. Like most substances in the body, they are made through a series of chemical reactions. Notice that I said the blood-brain barrier allows only glucose and certain nutrients selective access to the brain. It is those “certain nutrients” that the brain uses to make neurotransmitters. If there is a deficiency in any of the nutrients needed to make a specific neurotransmitter, there will be a corresponding deficiency of that neurotransmitter. Supplementing the deficient nutrient(s) will allow the brain to resume full production of the neurotransmitter.

Building a better brain

So what are the “certain nutrients” that the brain must have? Without going into the chemistry of neurotransmitter manufacture, suffice it to say that the brain’s supply of amino acids is the most common limiting step in their production. Amino acids, the basic building blocks of protein, are also the basic raw material the brain uses to function. As such, they easily cross the blood-brain barrier. All amino acids can cross the blood-brain barrrier, in fact, but not all are used to make neurotransmitters. The problem is that all the amino acids circulating in the blood stream at any given time compete for passage through the “amino acid channels” in the blood-brain barrier, and passage of a specific amino acid is granted in proportion to its concentration in the blood. If you eat a steak or other complete protein source, all 20 amino acids are simultaneously competing for entry into the brain. Supplementing with, say, 1 gram of a certain amino acid won’t do much if you chase it with a glass of milk (15 grams of protein in 12 oz.) or take it with a meal. To be effective, amino acid supplements should be taken on an empty stomach with plain water or fruit juice (the fructose in juice helps escort the amino acid to the brain).

In the paragraphs that follow, I will tell you which amino acids are used to boost which neurotransmitter, and the primary food sources for that amino acid. Food sources are complex, however, and foods that boost the production of one neurotransmitter can also contain substances that boost the production of another. Eggs, for example, provide a tremenous boost for acetylcholine, but they also have a component that supports GABA. This is one reason why a change of diet takes longer to produce an effect than supplementation with pure amino acids. You should know that prescription drugs are also available to boost the production of a specific neurotransmitter or slow its destruction, but that is beyond the scope of this article. They are listed in detail in the reference given at the end of the article. (Note: numbers shown after the supplements listed below refer to the relative efficacy in boosting the neurotransmitter, on a scale of [1]=best to [4]=least effective.)

Boosting acetylcholine

  • Pure amino acid precursors: serine, carnitine.
  • Amino acid-boosting supplements: DMAE (dimethylaminoethanol) [1], phosphatidylcholine [1], phosphatidylserine [2], acetyl-L-carnitine [2], GPC (glycerol phosphocholine) [3].
  • Supporting supplements: huperzine A [1], nicotine [1], lipoic acid (alpha-lipoic acid) [3], fish oils [3], manganese [4], conjugated linoleic acid [4].
  • Hormonal supplements: DHEA (dehydroepiandrosterone) [2].
  • Illegal supplements: LSD, PCP, psychotropic mushrooms.
  • Dietary support: choline-rich foods, including avocado, cucumber, zucchini, lettuce, most fruit, bacon, bologna, hot dogs, chicken, turkey, pork, liver, fish, beef, milk, ice cream, sour cream, yogurt, cheese, eggs, and various nuts.
  • Lifestyle support: aerobic exercise.

Boosting dopamine

  • Pure amino acid precursors: phenylalanine, tyrosine.
  • Amino acid-boosting supplements: N-acetyl tyrosine [2], L-tyrosine [3], phenylalanine [3]. (Note: most ingested phenylalanine is hydroxylated to tyrosine in the body. Tyrosine supplements, therefore, need one less chemical conversion step to be used by the body.)
  • Supporting supplements: caffeine [1], guarana [1], yohimbe [1], ephedra[2], nicotine [2], Rhodiola rosea[3], thiamine [4], chromium [4], folic acid [4].
  • Hormonal supplements: DHEA [2].
  • Illegal supplements: cocaine, ecstasy, mescaline.
  • Dietary support: phenylalanine- and tyrosine-rich foods, including wild game, duck, turkey, pork, chicken, luncheon meats, cottage cheese, ricotta, milk, yogurt, walnuts, soybeans, wheat germ, granola, rolled oats, dark chocolate, and eggs.
  • Lifestyle support: sexual activity (for women), weight-bearing exercise, aerobic exercise.

Boosting GABA

  • Pure amino acid precursor: glutamine.
  • Amino acid-boosting supplements: L-glutamine [1].
  • Supporting supplements: inositol [1], alcohol [1], B vitamins [2], glycine [3], kava [3], BCAA (branched-chain amino acids) [4], taurine [4].
  • Hormonal supplements: progesterone [2].
  • Illegal supplements: opioids, ketamine, marijuana, quaaludes.
  • Dietary support: glutamine-rich foods (especially complex carbohydrates), including almonds, walnuts, and other tree nuts, whole-grain wheat and oats, rice bran, brown rice, lentils, potatoes, broccoli, spinach, bananas, citrus fruit, halibut, and beef liver.
  • Lifestyle support: sexual activity (for men and women), sleep, aerobic exercise.

Boosting serotonin

  • Pure amino acid precursor: tryptophan.
  • Amino acid-boosting supplements: L-tryptophan [2], 5-HTP (5-hydroxytryptophan) [3].
  • Supporting supplements: St. John’s wort [2], vitamin B6 [4], fish oils [4].
  • Hormonal supplements: melatonin [1], progesterone [2].
  • Illegal supplements: LSD, PCP, GHB, ecstasy.
  • Dietary support: tryptophan-rich foods, including wild game, pork, luncheon meats, duck, turkey, chicken, wheat germ, cottage cheese, and eggs.
  • Lifestyle support: aerobic exercise, psychotherapy, sleep.

To learn more

This series of articles is a synopsis of the groundbreaking research of Eric R. Braverman, MD, as presented at the American Academy of Anti-Aging Medicine (A4M) Annual Conference, June 2003. Dr. Braverman was a member of the pioneering research team at Havard University that developed the BEAM (Brain Electrical Activity Map), a noninvasive device to measure neurotransmitter levels in functioning brains through electrical activity. For more information, his book, The Edge Effect, is highly recommended reading.

Understanding Cholesterol

Cholesterol is one of the least understood molecules and truly gets a "bad rap." Although people understand that cholesterol is only present in animal-based foods, what many do not know is that we produce cholesterol just like any other animal, and it is a very necessary molecule used to form all of the cell membranes in the body. Cholesterol is also the building-block molecule from which all of the steroid hormones are made. If there is more cholesterol in the diet than is needed, then the body synthesizes less. If the diet does not provide enough cholesterol then the body makes more.

Since cholesterol is used by the body to manufacture hormones such as cortisol, we can look at what cortisol is and make some logical connections. Cortisol is widely regarded as a "stress hormone" since the body needs and produces more of it in response to stress. This stress response takes many forms; one of them is lowering inflammation--useful if your version of stress involves hand-to-hand combat with large carnivores or fighting for your life. The lowering of inflammation is why the pharmaceutical versions of cortisol (Hydrocortizone and other glucocorticoids) are used to reduce inflammation in cases of massive trauma or major surgery. Other effects of cortisol are the elevation of blood pressure, release of glucose from the liver, inhibition of the immune system, retaining of water/reducing kidney function (probably useful if the combat with the large carnivores leads to bleeding form flesh wounds, as retaining water would help to maintain blood volume when bleeding profusely) and other effects. Taken together, when stress levels remain high, lots of cortisol is produced. It would then make sense that making a lot of cortisol requires a lot of what is made from, which is cholesterol. Therefor, during periods of high stress (a lifetime for many people), the levels of cholesterol can become very elevated. When the stress is long-term, the stress will end up raising the inflammation level through other mechanisms; effectively, stress reduces inflammation in the short-term only. Cholesterol has many other uses in the body, including the formation of myelin--the insulating/speeding sheath that wraps around the nerves, like rubber coating surrounding a copper wire, that increases their conduction velocity (and is damaged in multiple sclerosis).

Dietary modifications to reduce cholesterol has been met with mixed results. Some people can follow a strict no-cholesterol diet and achieve a lowering of their plasma cholesterol levels, while other are not able to accomplish this. This failure of dietary regimen to achieve the desired goal may be because of the body's production of cholesterol to meet the necessary levels for the amount of stress the individual is experiencing. The failure may also be because of reduced utilization of cholesterol. The gut bacteria play a role here also with Lactobacillus bacteria actively consuming cholesterol. Lactobacillus not only consumes cholesterol, but it makes bile acids that aid in the digestion of fats out of the cholesterol that it consumes. It therefore makes sense that if a person has altered gut bacteria demographies and Lactobacillus are in the minority, that person will not use up as much cholesterol and the cholesterol levels may accumulate. Elevated levels of stress reduce the levels of Lactobacillus, providing the pathway for stress to reduce the beneficial effects of a healthy diet. The same imbalance may also predispose the person to inflammation, which is the real cause of heart disease.

The use of probiotics in dairy products to control cholesterol greatly predates modern science, as the Maasai tribe in Kenya use a probiotic fermented milk in their diet. The Maasai diet is composed almost entirely of meat, milk and blood. This diet includes several times the recommended level of cholesterol, and yet the Maasai have no problems with atherosclerosis or other degenerative diseases that could be related to their diet. What has been found is that their fermented milk (no refrigeration, so it all gets fermented if not immediately consumed!) contains probiotic bacterial population s that help to consume and lower cholesterol. Other sources of probiotics, such as yogurt, have been found to lower cholesterol levels also. 

Many people incorporate yogurt into their diet because they like it or they think that it is healthy--but what makes it healthy? Much of the yogurt on store shelves has no bacterial colony whatsoever, so it is important to read the ingredients! If it has no "live active cultures," then it has little if any health benefit to our good bacteria and subsequent immune function.

Eggs have often been the poster child of high cholesterol food, if the yolk is used. However, consuming eggs may not have as much to do with elevated cholesterol level as initially thought. Similarly, fats were implicated in the disease process, as it has been observed that people with high triglycerides (fats) in their blood are at increased risk of developing heart disease. There are other variables in this equation, as is often the case. For example, abnormal populations of gut bacteria promote atherosclerosis by causing inflammatory changes and altered metabolism of lipids. The presence of abnormal gut bacteria that cause irritable bowel syndrome is directly linked to the development of thickening of the wall of arteries, which is of course the actual structural change that is at the center of what we call atherosclerosis.

Excerpt from The Symboint Factor by Richard Matthews DC DACNB FACFN

Healthcare: Treating the Symptoms and Not the Problem

We experience symptoms of illness (ie high blood pressure or dysbiosis)  as a sign that something within the body is not working as it should. The presence of symptoms should alert a person that the body has become imbalanced in some way, so that action can be taken to restore balance and function. Instead, most people are taught to treat the symptoms only. Examples would be taking pain relievers to control pain or using muscle relaxers for muscle spasms or even blood pressure pills and statin drugs to help with risk factors for heart disease. This unfortunately does not correct the underlying imbalance that caused the dysfunction and symptom to result. The true problem may continue creating imbalances in the body's system until more serious conditions manifest. 

There are few cases of "one cause, one cure" that happen in the human body. Pursuing health means maximizing the function of all the body's intrinsic systems as well as the brain. This is a completely different concept than what we usually encounter in healthcare. Often asked is the question: "will my insurance cover that?" when explaining health-building strategies, and the answer is almost always a "no." The reason is that insurance companies sell disease care policies, not health care policies. The number of pure health building interventions that are covered, if any, can often be counted on one hand. For example, does insurance cover nutritional supplements, gym memberships, yoga classes, new bicycles, probiotic foods, kitchen tools such as a VitaMix and similar items? Perhaps some of these are covered items in some countries, but not in the United States. Nothing that prevents cancer is covered, but annual early detection is, to see if your have it yet. The "system" is geared toward specific treatment for a specific disease, and yet almost all diseases have several factors or circumstances as causes. If a person falls and breaks a wrist, the doctor that treats that wrist has a very specific job. If the patient instead has arthritis and migraines, what are the causes? Inflammation, poor diet, biomechanical issues, lifestyle, genetics--four out of five of these are variables that we have control over and yet often do nothing about.

Adapted from The Symboint Factor by Richard Matthews DC DACNB FACFN