protein

Why Nutrient Supplementation is Essential for Modern Diets

Our existence depends on what the earth offers. 

The foundation of human nourishment comes from plants, which supply vital macronutrients such as proteins, fats, and carbohydrates, all generated through the nourishment obtained from the earth. Additionally, plants give us crucial micronutrients, including vitamins produced through photosynthesis and minerals extracted from the soil, both of which are essential for maintaining healthy cellular functions.

Vitamins and minerals play a crucial role in enzymes and coenzymes (enzyme helpers), acting as biological catalysts that accelerate chemical reactions needed for cellular operations. They collaborate to either combine molecules or break them down in countless chemical reactions that occur within living cells. In essence, life would not be possible without enzymes and their vital vitamins and minerals.

Considering this, the equation is straightforward: plants cannot produce minerals; they must absorb them from the soil. Thus, without minerals, vitamins cannot function effectively. As a result, if crucial minerals are depleted from our soil, they are also diminished in our bodies.

A continuous deficiency of minerals can lead to illness. Therefore, it is not surprising that any decline in the mineral and nutrient content of our soils results in a corresponding increase in nutrition-related diseases among both animal and human populations.

The alarming fact is that foods -- fruit, vegetables and grains -- now being raised on millions of acres of land that no longer contain enough of certain needed nutrients, are starving us -- no matter how much we eat of them.

—US Senate Document 264

Surprisingly, the statement mentioned earlier was made almost 80 years ago, in 1936. Since then, the United States and other industrialized countries have been experiencing an unprecedented loss of fertile land. Today, the topsoil in the US is eroding at a rate ten times faster than it can be replenished. In regions like Africa, India, and China, soil erosion surpasses the replenishment rate by 30 to 40 times. Current projections indicate that our global topsoil reserves will last less than 50 years. As topsoil diminishes, so do essential nutrients, and consequently, our health suffers.

Data presented at the 1992 RIO Earth Summit revealed that throughout the 20th century, mineral depletion of global topsoil reserves was widespread. During this period, agricultural soils in the US and Canada lost 85% of their mineral content; Asian and South American soils saw a 76% decrease; and in Africa, Europe, and Australia, soil mineral content declined by 74%. Since then, little has been done to prevent the inevitable depletion of these invaluable mineral resources.

In March 2006, the United Nations acknowledged a new form of malnutrition: multiple micronutrient depletion. According to Catherine Bertini, Chair of the UN Standing Committee on Nutrition, those who are overweight are just as malnourished as those who are starving. Ultimately, the problem lies not in the amount of food consumed, but in its quality.

Modern Agriculture Depletes Our Soil

The topsoils of the earth form a thin layer of mineral-rich, carbon-based material. They serve as buffers and filters for water and air pollutants, store vital moisture and essential minerals and micronutrients, and act as critical reservoirs for carbon dioxide and methane. Apart from global warming, soil degradation poses a severe threat to the long-term environmental sustainability of our planet.

Soil depletion was well recognized in ancient societies, which would either relocate to new lands every few years or enrich the soil with organic waste. In more recent history, the westward migration of Europeans to the New World saw families relocating frequently as their dry-land farming practices repeatedly exhausted the soil. The first indication of nutrient depletion was not crop failure but an increase in illness and disease among both animals and humans dependent on the land. Those who did not abandon their farms or practice soil replenishment experienced inevitable declines in crop production, eventually leading to complete land collapse, as seen in the Dust Bowl of the 1930s.

Now, there is nowhere else to go. We can no longer move to greener pastures because none remain. We must work with what we have; soil erosion, contamination from industrial pollutants, and depletion of our finite mineral resources have become global issues. Yet, modern agricultural practices continue to consume water, fuel, and topsoil at alarmingly unsustainable rates, seemingly disregarding nature's imperative to return what we have taken from the earth. Instead of renewing and restoring our soils, commercial agriculture has disrupted nature's natural cycles, and the consequences will be costly.

Depleted Soils, Depleted Crops

Soil depletion due to unsustainable agricultural practices leads to an inevitable decline in the nutrient content of our crops. Historical records indicate that the average mineral content of vegetables grown in US soils has decreased significantly over the last century. A 2004 study published in the Journal of the American College of Nutrition found considerable declines in the mineral and vitamin content of 43 garden crops grown in US markets. Additionally, a 2001 report by the Life Extension Foundation revealed that the vitamin and mineral content of various foods declined dramatically between 1963 and 2000. Collard greens experienced a 62% loss of vitamin C, a 41% loss of vitamin A, and a 29% loss of calcium, while potassium and magnesium decreased by 52% and 84%, respectively. Cauliflower lost nearly half of its vitamin C, thiamine, and riboflavin, and most of the calcium in commercial pineapples had almost vanished.

The US data supports findings for vegetable crops grown between 1940 and 2002 in Great Britain, which show mineral losses ranging from 15% to 62% for common minerals and trace elements. In an earlier study, harmful changes were found in the natural ratio of minerals, such as calcium and magnesium, in the foods tested. Similarly, a Canadian study found significant declines in the nutrient content of produce grown over a 50-year interval to 1999. During that time, the average Canadian potato lost 57% of its vitamin C and iron, 28% of its calcium, 50% of its riboflavin, and 18% of its niacin. The same trend was observed for all 25 fruits and vegetables analyzed. The Canadian data showed that nearly 80% of the foods tested displayed large drops in their calcium and iron content, three-quarters showed considerable decreases in vitamin A, half lost vitamin C and riboflavin, and one-third lost thiamine.

Selective breeding of new crop varieties prioritizing yield, appearance, and other commercially desirable traits has also contributed to the depletion of the nutritional value of our foods. Dr. Phil Warman of Nova Scotia's Agricultural College contends that the emphasis on appearance, storability, and yield, with little or no focus on nutritional content, has significantly exacerbated the overall nutrient depletion of our food. The USDA standards for fruits and vegetables only account for size, shape, and color, neglecting nutritional value. With such standards, it is not surprising that today, one would need to eat eight oranges to obtain the same amount of vitamin A that their grandparents got from a single orange.

Nutrient Depletion in Soils: Causes and Consequences

Soil erosion by wind and water is exacerbated by over-cultivating, over-grazing, and the destruction of natural ground cover. The loss of organic matter leads to a corresponding decline in nitrogen, minerals, and trace elements, as well as a reduction in the soil's ability to retain moisture and support healthy plant growth. High-yield crops further strain the limited nutritional capacity of our depleted soils. For instance, in 1930, an acre of land yielded about 50 bushels of corn, while by 1960, yields reached 200 bushels per acre—far exceeding the soil's capacity to sustain itself.

Erosion, combined with high-yield nutrient extraction, also depletes the soil of its alkalizing minerals (calcium, potassium, and magnesium), resulting in the loss of natural buffering capacity and an increase in soil acidity. Conversely, over-irrigation with hard (alkaline) water can cause some soils to leach essential minerals while accumulating others (such as calcium), making the soil too alkaline for crop growth.

Although nitrate, phosphate, and potassium (NPK) fertilizers, introduced in the early 1900s, substantially increase crop yield, they come at a high cost. Overuse of these chemical fertilizers has been found to accelerate the depletion of other vital macronutrients and trace elements while reducing their bioavailability to plants. NPK fertilizers gradually decrease soil pH, making soils too acidic to support beneficial bacteria and fungi. These symbiotic organisms aid plants in absorbing nutrients from the soil. Once absent, plants' micronutrient uptake is significantly impaired. Additionally, NPK application in acidic soils has been found to bind soil-based selenium, rendering it unavailable for root absorption.

Using NPK fertilizers to replenish primary growth-promoting nutrients fails to address the simultaneous losses of valuable micronutrients and trace elements (such as copper, zinc, and molybdenum) in intensively cultivated soils. According to Dr. William Albrecht of the University of Missouri, using NPK fertilizers ultimately leads to malnutrition, insect infestations, bacterial and fungal attacks, weed encroachment, and crop loss in dry weather. Albrecht argues that employing chemical fertilizers to increase yield weakens the crop, making it more vulnerable to pests and diseases. As a result, commercial farmers have no choice but to depend on a range of dangerous and harmful chemical pesticides to protect their crops and investments.

Nutrient Depletion Forces Pesticide Abuse: Consequences and Solutions

The decline of soil and crop health due to unsustainable commercial agricultural practices leads to a vicious cycle of dependence on pesticides and herbicides. The highly toxic organochlorine (OC) and organophosphorus (OP) derivatives damage our soils by killing symbiotic bacteria and fungi responsible for nutrient uptake in plants, inactivating essential enzyme systems within plant roots involved in mineral absorption, and destroying soil microorganisms needed to produce organic mineral complexes that naturally replenish the soil.

Moreover, these environmental toxins end up in our food, causing widespread human exposure to pesticides primarily through consumption. There is ongoing debate about whether low levels of exposure to these persistent environmental toxins and their residues can cause harm. Some studies have found harmful biological effects resulting from chronic environmental exposure, while others have reported harmful synergistic effects from combinations of pesticides and chemical agents at typical levels of environmental exposure.

Pesticides and herbicides have been linked to various human health effects, including immune suppression, hormone disruption, reduced intelligence, reproductive abnormalities, neurological and behavioral disorders, and cancer. They can also act as potent endocrine hormone disruptors and easily pass through the placenta to unborn infants, who are especially vulnerable to toxins that disrupt the developmental process. Children are particularly susceptible to these agents due to their higher food intake relative to body weight and their still-developing immune systems.

To protect ourselves and our children, it is crucial to choose sensible dietary alternatives to commercially grown and processed foods, which are the primary sources of pesticide and herbicide exposure. Some ways to reduce exposure include:

  1. Buying organic produce: Organic farming practices avoid the use of synthetic pesticides and herbicides, reducing the potential for toxin exposure through food consumption.

  2. Washing and peeling fruits and vegetables: Thoroughly washing and peeling produce can help remove some pesticide residues on the surface.

  3. Eating a diverse diet: Consuming a variety of foods can help minimize the risk of exposure to a single pesticide or a group of related pesticides.

  4. Supporting sustainable agriculture: Encourage and support agricultural practices that prioritize soil health, biodiversity, and environmental sustainability.

By making informed choices, we can help reduce our exposure to harmful pesticides and herbicides while promoting agricultural practices that preserve soil health and protect our environment.

Organic Agriculture Improves Nutrient Content: Benefits and Considerations

Throughout most of human history, agriculture has relied on organic growing practices. However, over the past 100 years, synthetic chemicals and their destructive consequences have been introduced to the food supply. Thankfully, more and more progressive growers are abandoning commercial growing techniques and returning to organic methods and traditional soil care.

Organic gardening utilizes natural mulching and cultivation techniques that nourish the soil rather than the plant. This approach replenishes nutrients lost through plant growth and fosters the growth of beneficial fungi, nitrogen-fixing bacteria, and other advantageous microorganisms. Healthy living soil encourages the symbiosis of plants with these soil microbes, enhancing the transfer of essential nutrients into the plants. Organic agriculture, unlike conventional agriculture, respects the natural replenishing cycles of nature.

A 2003 study in Seattle, Washington, found that children aged two to four who consumed organically grown fruits and vegetables had urine levels of pesticides six times lower than those who consumed conventionally grown foods. The study's authors concluded that consuming organic fruits, vegetables, and juices could reduce children's exposure levels to below the EPA's current guidelines, thus moving exposures from a range of uncertain risk to a range of negligible risk.

A growing body of evidence supports the health-promoting effects of organically grown foods. Studies have shown that organic crops have higher levels of vitamin C, iron, natural sugars, magnesium, phosphorus, and other minerals and lower levels of harmful nitrates than conventional crops. An independent review published in the Journal of Complementary Medicine found that organically grown crops had significantly higher levels of nutrients for all 21 nutrients evaluated compared to conventionally grown produce. Organically grown spinach, lettuce, cabbage, and potatoes exhibited particularly high mineral levels.

Research by the University of California (Davis) revealed that organically grown tomatoes and peppers had higher levels of flavonoids and vitamin C than conventionally grown tomatoes. The health-promoting effects of these secondary plant metabolites, produced by plants to protect themselves from oxidative damage caused by strong sunlight, are well-established. High-intensity conventional agricultural practices seem to disrupt the production of these natural plant metabolites, resulting in reduced flavonoid content in conventional crops. In contrast, organic growing practices stimulate the plant's defense mechanisms, leading to increased production of these vital botanical nutrients. Organic crops, which are not protected by pesticides, have higher levels of flavonoids than conventional crops, including up to 50% more antioxidants. A prime example is the polyphenol content of red wine: this heart-healthy nutrient is found in much higher concentrations in wine made from organically grown grapes, which produce the nutrients to protect against a naturally occurring fungus that attacks grape skins.

Conclusion

In conclusion, the modern lifestyle and reliance on commercial, chemically based agriculture have led to the degradation of the nutritional value of our food supply and increased our exposure to environmental toxins. As a result, many people are not meeting their daily nutritional requirements, even if they consume the recommended servings of fruits and vegetables.

To counter these challenges and ensure a healthy diet, consider the following recommendations:

  1. Opt for organic produce whenever possible to reduce exposure to chemical pesticides and benefit from the higher nutrient content found in organically grown foods.

  2. Complement your diet with high-quality nutritional supplements to ensure you meet your daily nutritional requirements, particularly if you struggle to consume the recommended servings of fruits and vegetables.

  3. Practice mindful eating habits, including consuming a diverse and balanced diet rich in whole, unprocessed foods.

  4. Stay informed about the source of your food and support sustainable and responsible agricultural practices that prioritize the health of the environment and consumers.

By making informed choices about the food we consume and the agricultural practices we support, we can help protect our health and the environment while enjoying the benefits of a nutrient-rich diet.

Weapons of Mass Construction: Amino Acids

Adapted from Eric Braverman's The Healing Nutrients Within

What do carnivores, vegetarians and omnivores all have in common? They all require protein in order to sustain and optimize life. Protein is the second most abundant substance in our bodies after water. It constitutes ¾ of the dry weight of most body cells. It is involved in the biochemical structure of genes, blood, tissue, muscle, collagen, skin, hair, and nails, and is a major constituent of all the many hormones, enzymes, nutrient carriers, infection-fighting antibodies, neurotransmitters and other chemical messengers in the body. This continuous process of building and regeneration is necessary for life and requires a non-stop supply of protein.

All protein is made up of different combinations of amino acids – essential or nonessential – that are consumed as part of our diet. The body breaks down these dietary proteins into individual amino acids and then reassembles them to build the specific structures needed within the body. Like carbohydrates and fat, protein is composed of hydrogen, oxygen and carbon, Yet, protein also contains nitrogen, which provides it with the ability of bodily repair and construction.

People do not realize how busy the human body is and to make it worse the need for quality protein intake often goes unrecognized in our hypercaloric environment. To illustrate, every second bone marrow makes 2.5 million red cells; every four days the lining of the gastrointestinal tract is renewed; and every 24 days a person has the equivalent of new skin. All this continuous repair work requires the building blocks of protein; amino acids.

The liver has the ability to produce about 60% of the amino acids we need, while the remaining 40% must be obtained from our diet. At present, the Recommended Dietary Allowance (RDA) for protein is between 44 to 56 grams per day. Yet, in America most people eat two to three times that amount and even vegetarians consume upwards of 80 to 100 grams a day!

So one would think that as long as we are eating adequate amounts of protein, containing the essential amino acids, we should be covered, right? The answer to that question is dependent on the individual person. The body’s requirement for essential amino acids is determined by our age group, degrees of stress, energy requirements, digestive capabilities, infection, trauma, environmental pollution, processed foods and one’s personal habits such as smoking and drinking. All these factors influence the need and availability of protein and its amino acid constituents. Additionally, one has to factor in nutrient deficiencies as there are multiple vitamins, namely pyridoxine (vitamin B6), riboflavin (vitamin B2) and niacin (vitamin B3), that act as cofactors (a substance important for the activity of the enzyme) which are instrumental in the metabolism of amino acids.

It is for these reasons that while we adequately meet our recommended daily amount of protein, it may by no means be broken down and used efficiently. This is extremely important to recognize when we understand that each amino acid is designed for a specific purpose and cannot be interchanged. If our diet fails to provide, or our lifestyle uses up, any given essential amino acid problems can arise. The following list is taken from Eric Braverman’s The healing Nutrients Within to illustrate how different amino acids play a large role in our overall health and wellness:

  • Arginine has been shown to act similar to and in some cases replace viagra for restoring erectile function and a sagging libido. It has also been found to increase sperm count
  • New research measuring the breakdown products of bone in hydroxyproline may prove more advantageous for assessing bone loss than the standard bone density test
  • Scientific evidence shows that boosting energy levels in the brain with phenylalanine and tyrosine is key to weight loss
  • Melatonin and tryptophan have established themselves as multipurpose nutrients to improve sleep, defuse anxiety and slow down the aging process. Recent studies show promise for the use of tryptophan in the treatment of autism
  • Homocysteine has gained recognition as a major independent risk indicator for cardiovascular disease. New research suggests it may also pretend neural tube defects, sickle cell disease, rectal polyps, and liver failure, and may contribute to depression, dementia and loss of brain function in the elderly
  • Tyrosine can help cocaine and alcohol abusers kick their habits and combat the effects of stress, narcolepsy, chronic fatigue, and ADD
  • Amino acid blood levels are increasingly serving as important indicators of physical and mental illnesses. They provide major nutritional and biochemical clues for more effective treatment
  • Carnitine has been shown to offer significant protection against the common side effects of Depakote (a popular drug used for seizures and psychotic disorders). Its derivative N-acetyl-carnitine may surpass the metabolic potency of carnation in the brain, where it has been found to slow the progression of Alzheimer’s disease
  • Scientific evidence continues to mount showing N-acetyl cysteine… to be perhaps the most powerful detoxifier in the body. It is now found in every emergency room as an antidote to overdose cases and as well can render harmless everyday environmental toxins.
  • New, modified GABA compounds such as gabapentin (Neurotin) and tigabine (Gabitril) are producing improved uptake in the brain and appear to be important products in the control of seizures and anxiety disorders. Early studies indicate GABA may also be correlated to a decrease in benign prostatic hypertrophy.
  • Research with serine compounds show that blocking serine metabolism may serve to prevent autoimmune activity present in psychoses
  • Glutamic and Aspartic acids create additional neurotoxic damage in the brain following stroke. New drugs that block the action of the excretory amino acid transporters (EAATs) have recently been approved.
  • BCAAs promote optimal muscle growth and improve performance… additionally they also offer promise for staving off muscle loss as we age.

As the research in the area of amino acid therapy continues to grow we can firmly apply the idea of Pfeiffers Law: if a drug can be found to do the job of medical healing, a nutrient can be found to do the same job.

High Protein Diet Has No Harmful Effects

Many people are under the impression that high protein diets are evil and cause all types of diseases, however a recent study says that notion is nonsense.

A study published in the Journal of Nutrition and Metabolism found that in resistance-trained men that consumed a high protein diet (~2.51–3.32 g/kg/d) for one year, there were no harmful effects on measures of blood lipids as well as liver and kidney function. In addition, despite the total increase in energy intake during the high protein phase, subjects did not experience an increase in fat mass.

A High Protein Diet Has No Harmful Effects: A One-Year Crossover Study in Resistance-Trained Males

 

Grains - The Real Cereal Killer

Watch now/download: https://www.yekra.com/cereal-killers Distribute this film to your audience: http://bit.ly/1kZ1kL2 Synopsis The film follows Donal -- a lean, fit, seemingly healthy 41 year old man -- on a quest to hack his genes and drop dead healthy by avoiding the heart disease and diabetes that has afflicted his family.

By Dr. Mercola

The persistent myth that dietary fat causes obesity and promotes heart disease has undoubtedly ruined the health of millions of people. It's difficult to know just how many people have succumbed to chronic poor health from following conventional low-fat, high-carb recommendations, but I'm sure the number is significant.

In the featured documentary, Cereal Killers, 41-year-old Donald O'Neill turns the American food pyramid upside-down—eliminating sugars and grains, and dramatically boosting his fat intake. In so doing, he improves his health to the point of reducing his hereditary risk factors for heart disease to nil.

Watching people's reactions to his diet brings home just how brainwashed we've all become when it comes to dietary fat. Most fear it. Yet they will consume sugar in amounts that virtually guarantee they'll suffer all the devastating health consequences they're trying to prevent by avoiding fat, and then some!

Fat versus Carbs—What Really Makes You Pack on the Pounds?

The fact is, you've been thoroughly misled when it comes to conventional dietary advice. Most dietary guidelines have been massively distorted, manipulated, and influenced by the very industries responsible for the obesity epidemic in the first place—the sugar and processed food industries.

Shunning the evidence, many doctors, nutritionists, and government health officials will still tell you to keep your saturated fat below 10 percent, while keeping the bulk of your diet, about 60 percent, as carbs.1 This is madness, as it's the converse of a diet that will lead to optimal health.

A recent Time Magazine2 article highlighted a report by the Environmental Working Group (EWG), which showed that many breakfast cereals contain more than 50 percent sugar by weight! Cereals marketed specifically to children are among the worst offenders. Kellogg's Honey Smacks and Mom's Best Cereals Honey-Ful Wheat topped the list with 56 percent sugar by weight. If you're looking for alternatives for your family you could try Snackimals from Barbara's. Snackimals is not on the EWG's list because it is a newer product. All of their flavors have only 7 grams of sugar per serving.

Even diabetes organizations promote carbohydrates as a major component of a healthy diet—even though grains break down to sugar in your body, and sugar promotes insulin resistance, which is the root cause of type 2 diabetes in the first place.

As noted in the film: "If we could get all diabetics to eat a high-fat, high-protein, low-carbohydrate diet, we would cut the insulin requirement so dramatically that it's been estimated that six pharmaceutical companies would go out of business tomorrow."Contrary to popular belief, you do not get fat from eating fat. You get fat from eating too much sugar and grains.

Refined carbohydrates promote chronic inflammation in your body, elevate low-density LDL cholesterol, and ultimately lead to insulin and leptin resistance. Insulin and leptin resistance, in turn, is at the heart of obesity and most chronic disease, including diabetes, heart disease, cancer, and Alzheimer's—all the top killers in the US. 

Don't Fear the Fat

In the film, O'Neill switches over to a diet where 70 percent of his calories come from healthy fat—most of it in the form of macadamia nuts (my personal favorite)—and the remaining 30 percent of his caloric intake is divvied up between protein and fibrous fruits and vegetables. Over the course of 28 days, O'Neill:

  • Loses weight and body fat
  • Increases his lean muscle mass
  • Feels more energetic and improves his athletic performance
  • Increases his resting metabolic rate
  • Improves his blood pressure, cholesterol, and other measurements to the point that he no longer has any risk factors for heart disease, which he's genetically predisposed for

Of particular importance here is that O'Neill's total cholesterol and LDL levels wentup, which initially caused significant concern. However, once they tested the LDL particle numbers, the results showed that his LDL particles were the largest species known, and he had virtually no small LDL particles at all.

This is phenomenal, as it's the small, dense LDL particles that cause inflammation. Large particles do not. Also, the markers for inflammation were virtually nonexistent, showing that he has no inflammation in his body at all. All in all, his one-month long high-fat, no-carb diet experiment proved that:

  • Eating fat helps you lose fat
  • Eating saturated fat decreases your risk factors for heart disease
  • Regardless of your genetic predisposition your diet is, ultimately, the determining factor

I would also add that his results show the benefits of a high-fat, low-carb diet for athletes, many of whom are still convinced that this type of diet will make them heavy and sluggish. On the contrary, O'Neill breaks his own athletic record during his experiment, and refers to his renewed sense of vigor as feeling like a "spring lamb."

This high and sustained energy is a hallmark of ketogenesis, where your body is burning fat rather than sugar as its primary fuel. When your body burns fat, you don't experience the energy crashes associated with carbs.

Saturated Fat and Cholesterol Are Both Necessary for Optimal Health

Contrary to popular belief, saturated fats from animal and vegetable sources provide a number of important health benefits, and your body requires them for the proper function of your:

Cholesterol—another wrongly vilified dietary component—also carries out essential functions within your cell membranes, and is critical for proper brain function and production of steroid hormones, including your sex hormones. Vitamin D is also synthesized from a close relative of cholesterol: 7-dehydrocholesterol. 

Your body is composed of trillions of cells that need to interact with one another. Cholesterol is one of the molecules that allow for these interactions to take place. For example, cholesterol is the precursor to bile acids, so without sufficient amounts of cholesterol, your digestive system can be adversely affected. It's also critical for synapse formation in your brain, i.e. the connections between your neurons, which allow you to think, learn new things, and form memories. In fact, there's reason to believe that low-fat diets and/or cholesterol-lowering drugs may cause or contribute to Alzheimer's disease.3

Replacing Refined Carbs with Healthy Fat—The Answer to Most of Your Health Concerns

Underlying most chronic diseases, including obesity, type 2 diabetes, heart disease, and cancer are inflammation and insulin/leptin resistance. When you eat carbohydrates, your blood sugar, insulin, and leptin will all temporarily rise, and these spikes are very pro-inflammatory. Where you have inflammation, disease and dysfunction follows. An excellent editorial in the journal Open Heart4 reviews the cardiometabolic consequences of replacing saturated fats with carbohydrates, which includes the following:

The answer, then, lies in avoiding these inflammatory spikes in blood sugar, insulin and leptin, and reversing insulin and leptin resistance. To do this, you need to:

  • Avoid refined sugar, processed fructose, and grains. This means avoiding processed foods, as they are chockfull of these ingredients, along with other chemicals that can wreak metabolic havoc
  • Eat a healthful diet of whole foods, ideally organic, and replace the grain carbs you cut out with:
  • Moderate amounts of high-quality protein from organic, grass-fed or pastured animals (this is to ensure you're not getting the antibiotics, genetically engineered organisms, and altered nutritional fat profile associated with factory farmed animals)
  • High amounts of high-quality healthful fat as you want (saturated and monounsaturated). Many health experts now believe that if you are insulin or leptin resistant, as 85 percent of the US population is, you likely need anywhere from 50 to 85 percent of your daily calories in the form of healthful fats for optimal health. Good sources include coconut and coconut oil, avocados, butter, nuts (particularly macadamia), and animal fats. Avoid all trans fats and processed vegetable oils (such as canola and soy oil). Also take a high-quality source of animal-based omega-3 fat, such as krill oil.
  • As many vegetables as you can muster. Juicing your vegetables is a good way to boost your vegetable intake

Another "add-on" suggestion is to start intermittent fasting, which will radically improve your ability to burn fat as your primary fuel. This too will help restore optimal insulin and leptin signaling.

What's the Deal with Protein?

Dr. Rosedale, who was one of my primary mentors on the importance of insulin and leptin, was one of the first professionals to advocate both a low-carb and moderate protein (and therefore high-fat) diet. This was contrary to most low-carb advocates who were, and still are, very accepting of using protein as a replacement for the carbs.

The problem is that, along with grains, most Americans tend to eat far too much protein. While your body certainly has a protein requirement, there's evidence suggesting that eating more protein than your body needs could end up fueling cancer growth.

Dr. Rosedale advises limiting your protein to one gram of protein per kilogram of lean body mass (or 0.5 grams per pound of lean body weight). For most people, this means cutting protein down to about 35-75 grams per day. Pregnant women and those working out extensively need about 25 percent more. I believe this theory is worthy of consideration. The key though is to add healthy fat to replace the carb and protein calories you're cutting out of your diet. Again, sources of healthy fat include:

Your Health Is Within Your Control

Groundbreaking research by the likes of Dr. Robert Lustig and Dr. Richard Johnson (author of the books, The Sugar Fix and The Fat Switch) clearly identifies the root cause of obesity, diabetes, heart disease, and numerous other chronic diseases, and it's notfat. It's refined sugar—particularly fructose—consumed in excessive amounts. Their research, and that of others, provides us with a clear solution to our current predicament. In short, if you want to normalize your weight and protect your health, you need to address your insulin and leptin resistance, which is the result of eating a diet too high in sugars and grains.

For a comprehensive guide, see my free optimized nutrition plan. Generally speaking though, you'll want to focus your diet on whole, ideally organic, unprocessed or minimally processed foods. For the best nutrition and health benefits, you'll also want to eat a good portion of your food raw.

Sugar is highly addictive, and if you're like most people, you're no stranger to carb cravings. Just know that once your body gets used to burning fat instead of sugar as its primary fuel, those cravings will vanish. Many cereals and other grain products would not be quite as harmful if they didn't also contain so much added sugar. Even many organic brands contain excessive amounts. This is unfortunate, since many (Americans in particular) are really indoctrinated to eat cereal for breakfast. I've been working on a low-sugar cereal line for some time now, to provide a healthier alternative for those who really don't want to give up their breakfast cereal. I hope to have it ready sometime this summer.

Last but not least, for those of you still concerned about your cholesterol levels, know that 75 percent of your cholesterol is produced by your liver, which is influenced by your insulin levels. Therefore, if you optimize your insulin level, you will automatically optimize your cholesterol, thereby reducing your risk of both diabetes and heart disease.

Also, remember that even if a high-fat, low-carb diet was to raise your total cholesterol and LDL, it doesn't automatically mean that your diet is increasing your risk factors for heart disease. As O'Neill did in this film, you need to test your LDL particle number. Large-sized particles are good, while the smaller, denser particles can penetrate the lining of your arteries and stimulate the plaque formation associated with heart disease. The former does NOT increase your heart disease risk, while the latter one will. To learn more about LDL particle numbers and how to test them, please see my previous interview with Chris Kresser, L.Ac., which goes into this in some detail.

Protein: The Facts, the Myths, and the Real Science

Everyone has an opinion about protein, and the myths surrounding it are rampant. That's why sorting the facts from the crap will lead to better choices regarding your own diet and protein intake. Answer the questions below and see if you've been falling for the myths.

Fact or Myth?

The RDA (Recommended Dietary Allowance) protein suggestions are just fine for people who work out.

Hint: The RDA guideline for protein is 0.8 grams per kilogram of bodyweight per day. So if you weigh 190 pounds (86 kilograms) you'd need about 69 grams of protein.

The Answer: Lifters and athletes concerned with their performance or physique require more protein than what's recommended by the RDA. So it's a myth (and a joke) that the RDA protein recommendations are adequate for ass-kicking individuals.

Here's Why: RDA protein recommendations are too low for certain groups. Those recommendations were never intended for people attempting to enhance performance, maintain, or gain muscle. In fact, a higher protein intake may have positive benefits regarding different health ailments including obesity, type 2 diabetes, osteoporosis, heart disease and muscle wasting.

The RDA guideline reflects the minimum daily needs of protein required to maintain short-term nitrogen balance in healthy, moderately active people. Nitrogen balance compares the amount of nitrogen coming into the body (from dietary protein) to the amount being lost. It's often used as a measurement of protein balance since protein is 16 percent nitrogen.

If you're consuming the same amount of nitrogen that you're losing, you're in nitrogen balance. If you're consuming more than you're losing, you're in positive nitrogen balance. If you're losing more than you're consuming, you're in negative nitrogen balance and are losing protein.

Nitrogen balance studies often involve examining urinary nitrogen levels. Approximately 90 percent of the nitrogen in urine is urea and ammonia salts – the end products of protein metabolism. The remaining nitrogen is accounted for by other nitrogen-containing compounds.

This nitrogen balance method is useful, but it has problems: Urine collections tend to underestimate nitrogen losses, dietary intake tends to be overestimated, miscellaneous skin and hair losses are prone to error, and the response to increased protein intake varies tremendously.

The Really Geeky Stuff

  1. In a review published in the International Journal of Sports Nutrition, researchers concluded, "Those involved in strength training might need to consume as much as 1.6 to 1.7 grams of protein per kilogram per day (approximately twice the current RDA) while those undergoing endurance training might need about 1.2 to 1.6 grams per kilogram per day (approximately 1.5 times the current RDA)."
  2. In another article published in Nutrition & Metabolism, researcher Donald Layman argued that the dietary guidelines should be improved and reflect new understandings about protein requirements. According to him, "During the past decade a growing body of research reveals that dietary protein intakes above the RDA are beneficial in maintaining muscle function and mobility." Diets with increased protein have been shown to improve adult health when it comes to treatment or prevention of obesity, type 2 diabetes, osteoporosis, heart disease and muscle wasting.
  3. A review published in the International Journal of Sport Nutrition and Exercise Metabolism was conducted to evaluate the effects of dietary protein on body composition in energy-restricted resistance-trained athletes, and to provide protein recommendations for these athletes.

The researchers concluded that "...the range of 2.3 to 3.1 grams per kilogram of FFM (fat free mass) is the most consistently protective intake against losses of lean tissue." In other words, for every kilogram on your body that's not fat, you should be consuming 2-3 grams of protein in order to preserve lean tissue. So if you have 190 pounds of lean tissue, up to 258 grams of protein would be optimal for you.

In addition, the goal of the athlete should be considered. Leaner athletes or those having a primary goal of maintaining maximal FFM should aim toward intakes approaching the higher end of this range. Even higher levels of protein than those recommended in the review are not uncommon in exercising individuals. It's unlikely that negative health consequences will follow from higher levels of intake, assuming there are no related health problems that would suggest limiting intake.

Fact or Myth?

The thermic effect of protein is the same as it is for carbs and fat.

Hint: The thermic effect of feeding or diet induced thermogenesis (DIT) is the amount of energy your body has to expend in order to digest and assimilate food. So picture a lean chicken breast (mostly protein), a bowl of rice (mostly carb), and tablespoon of butter (mostly fat). Which do you think your body will have to work hardest to digest?

The Answer: Among the three macronutrients, protein ranks highest in diet induced thermogenesis. So it's a myth that they're all equal in terms of their thermic effect. That means it'll cost you more calories to digest and absorb protein than it would fat and carbohydrate.

Here's Why: The consumption of protein requires an expenditure of 20-30% of the calories derived from protein. So, if 200 calories of protein are eaten, 40-60 calories are burned during digestion. DIT from carbohydrate is 15-20% and 2-5% for fat.

Fact or Myth?

Protein is more satiating (filling) than fat or carbohydrate.

Hints: Protein has an influence on CCK (cholecystokinin) and ghrelin. Protein may stimulate cholecystokinin (CCK) and decrease ghrelin. CCK is secreted mostly from the inner layer of the gastrointestinal tract has been shown to act as a satiety signal. The satiating effect of CCK was first demonstrated when administering CCK to rats. It "dose dependently" reduced meal size. Ghrelin is produced primarily in the stomach and has appetite increasing properties. Ghrelin levels are relatively high prior to a meal and they decrease after a meal.

The Answer: It's a fact that protein is usually more satiating than fat or carbs. When comparing protein, fat, and carbohydrate, protein is generally reported as the most satiating (satisfying to a point of full or beyond) and fat as the least satiating.

Here's Why: Research indicates that one of the primary factors involved with the satiating effects of protein is the thermic effect of feeding, mentioned above. Though protein's influence on ghrelin and CCK may play a large role in its satiating effects, more research needs to be conducted in these areas, as findings have been indecisive. Future research should concentrate on different levels of protein, different types of protein, and consumption of proteins in short and long term.

The Really Geeky Stuff

  1. A review published in Nutrition & Metabolism reported that protein induced thermogenesis has an important effect on satiety. "Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis."
  2. A study published in Physiology & Behavior investigated the relative satiating effect of the macronutrients in lean women. On four separate occasions, the composition of an iso-caloric lunch "preload" was controlled in 12 lean women. Macronutrient composition had a significant effect on short-term hunger – the women were less hungry after the protein preload compared to the preloads with the other macronutrients. They also ate less after the protein preload.
  3. A study published in the American Journal of Clinical Nutrition tested the prediction that increasing protein while maintaining the carb content of a diet lowers body weight due to decreased appetite and decreased calorie intake. The study showed when increasing the protein intake from 15% of diet to 30% of diet (while eating the same amount of carbs) there was a decrease in appetite and fewer calories were consumed.
  4. The Journal of Clinical Endocrinology & Metabolism published a study that compared the effect of different proteins and carbohydrates on indicators of appetite and appetite regulatory hormones. CCK level was one of the primary outcomes measured.

Calorie intake was higher after the glucose preload compared with lactose and protein preloads. CCK level was higher 90 minutes after the protein preloads compared with glucose and lactose level. Researchers concluded that "acute appetite and energy intake are equally reduced after consumption of lactose, casein, or whey compared with glucose."

One Quick Caveat

The research sometimes gets a little messy. For example, some studies are indecisive when it comes to protein intake and ghrelin levels. This is why you need to rely on your own reasoning, logic, and experience while gathering info from the research.

References

  1. Blom, A.M., Lluch, A., Stafleu, A., Vinoy, S., Holst, J., Schaafsma, G., & Hendriks, H. (2006). Effect of high-protein breakfast ont he postprandial ghrelin response. The American Journal of Clinical Nutrition, 83(2), 211-220.
  2. Bowen, J., Noakes, M., Trenerry, C., & Clifton, P.M. (2006).Energy intake, Ghrelin, and Cholecystokinin after Different Carbohydrate and Protein Preloads in Overweight Men. The Journal of Clinical Endocrinology & Metabolism, 91(4).
  3. Helms, E., Zinn, C., Rowlands, D.S., & Brown, S.R. (2014). A Systematic Review of Dietary Protein During Caloric Restriction in Resistance Trained Lean Athletes: A Case for Higher Intakes. International Journal of Sport Nutrition and Exercise Metabolism, 24, 127-138.
  4. Layman, D.K.(2009). Dietary Guidelines should reflect new understandings about adult protein needs. Nutrition & Metabolism, 6(12), Lemon, P. (1998). Effects of exercise on dietary protein requirements. International Journal of Sports Nutrition, 8(4), 426-447.
  5. Lucas, M, & Heiss C.J.(2005) Protein needs of older adults engaged in resistance training: A review. Journal of Aging and Physical Activity, 13(2), 223-236.
  6. Moran, L.J., Luscombe-Marsh, N.D., Noakes, M., Wittert, G.A., Keogh, J.B., & Clifton, P.M. (2005). The Satiating Effect of Dietary Protein Is Unrelated to Postprandial Ghrelin. The Journal of Clinical Endocrinology & Metabolsim, 90(9).
  7. Poppitt, S.D., McCormack, D., & Buffenstein, R. (1998).Short-term effects of macronutrient preloads on appetite and energy intake in lean women. Physiology & Behavior, 64(3), 279-285.
  8. Weigle, D.S., Breen, P.A., Matthys, C.C., Callahan, H.S., Meeuws, K.E., Burden, V.R., & Purnell, J.Q. (2005). A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. The American Journal of Clinical Nutrition, 82(1), 41-48.
  9. Westerterp, K.R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1, 1-5

Chocolate Milk For Post-Workout: A Look at the Research

Over recent years, there has been a massive initiative to promote chocolate milk as “the best” drink for post-training recovery. Milk advertisers use very high level athletes as spokespersons to sell a product to people who are indeed active, but often very far from the training level of an Olympic athlete.

Nautilus Plus is participating to this initiative: “Whether you are a professional athlete or a weekend sports enthusiast, recover from your next training faster with the Ultimate Chocolate Milk®.”(1) Do we really need to fill ourselves with all this added sugar after our training?

One litre of chocolate milk contains up to 100 to 110 g of sugar!!! The quantity of sugar that the body can absorb is limited. In fact, the sugar will be stored in the liver and muscles in the form of glycogen, which only represents 5 % of the body’s total energy reserves (2). If your objective is, as for the majority of people, to lose fat, you need to remember this: to allow yourself to consume a supplement rich in carbohydrates after your training, you will have to have emptied or seriously depleted your glycogen stores in order for the extra sugar absorbed to be used to renew your glycogen stores. And if you absorb more sugar than you need to renew your reserves, it will be transformed into fat (3).

Scientific studies

Many scientific studies have been done on sports nutrition supplements and some included chocolate milk. The purpose of these studies was to determine which mixture of molecules, and in what proportion, best promotes post-training recovery as well as athletic performance. Almost all these studies followed this particular protocol:

  1.  Study participants were subjected to intense exercise at 70 to 85% of their VO2 max during 1 to 3 hours. The purpose of this step was to considerably reduce the muscle and hepatic glycogen stores since 70 to 80% of the energy spent at 85% VO2 max is derived from glycogen. Under 65% of VO2 max, mostly fatty acids are used (4, 5).
  2. A recovery period between 4 and 8 hours followed to allow the participants to replenish their glycogen stores with the various sports nutrition supplements covered in the study.
  3. Participants were then subjected to a second high intensity exercise (VO2 max between 70 and 85%) until exhaustion (loss of 85 to 95% of their hepatic glycogen and 65 to 85 % of their muscle glycogen) (6). The difference in time or distance between the performances will determine which sports nutrition supplements helped the athlete the most to recuperate between the two sessions.
    .

The role of these sports nutrition supplements is therefore to replenish as quickly and efficiently as possible the glycogen stores which were SIGNIFICANTLY depleted during the first training, in order to allow a second intense performance within 4 to 8 hours.

This situation is certainly frequent among Olympic athletes or athletes from the Tour de France who train several times per day or several days in a row at extreme intensities, but what about other people? Is chocolate milk a good supplement for “weekend athletes” or people who train leisurely, three of four times per week?

After your leisure strength training?

For a person who does resistance strength training, the glycogen stores will fall by 25 to 40 % after an intense strength training (7 to 12), which is relatively little. The glycogen stores lost during the training will be rebuilt through normal nutrition, WITHOUT ANY SUPPLEMENTS, within 24 hours of the training. However, some people consider it very important to MAXIMIZE the production of lean muscle mass. So the rapid intake of PROTEIN supplements after the training (within 1 hour if possible, up to 3 hours later) is important since it promotes maximum muscle synthesis(13 to 33). Recently, a research team questioned this principle claiming that it would be the total quantity of proteins ingested each day that would prevail over the moment at which they are ingested (34, 35). The same team also mentioned that if a “window” for taking a protein supplement and maximizing the production of lean muscle mass does exist, it would rather span over a 4 to 6 hour period following the strength training.

According to various recent studies, 20 to 25g of proteins would be the recommended amount to take after a resistance training (25, 33, 36). Witard et al., 2014 consider that 20 g of whey protein containing approximately 2 g of leucine optimally stimulates muscle synthesis (33). A litre of chocolate milk contains approximately 30g of proteins, including 80% of micellar casein and 20% of whey (37). Studies on post-training muscle synthesis clearly show the very poor efficiency of micellar casein for this purpose (26, 28, 38, 39, 40) because it precipitates in the stomach and the absorption of amino acids responsible for muscle synthesis is therefore very slow (26, 41, 42, 43). One argument that is often used by chocolate milk advocates is that milk (skim) is more efficient than soy protein or casein to promote muscle synthesis (23, 24). That’s true! It is actually the 20% of whey proteins contained in the milk that makes it efficient for muscle regeneration (26, 28, 40). What they don’t say is that purified whey protein (concentrate or isolate) is the best all around for lean muscle mass gain (26, 28, 40, 44, 45, 37) and, consequently, is better than milk. Whey protein is very rich in BCAA and is quickly absorbed by the intestine, as opposed to casein which is absorbed slowly. Therefore, why take a milk supplement if a whey protein shake is more efficient? Not only does chocolate milk contain large quantities of casein, but it can also contain saturated fat (if it’s full fat) as well as a large quantity of added simple sugars, on top of the lactose. So, is it useful to add all this sugar to the proteins (which are already not optimal) to maximize muscle synthesis after my resistance training?

Some studies show that carbohydrates (CHO) could inhibit muscle breakdown caused by training (10, 46, 47, 48, 49). A few groups claim that a carbohydrate/protein (CHO:PRO) supplement would facilitate a better muscle synthesis since it would inhibit muscle breakdown (15, 32, 46, 48, 50, 51). Nevertheless, some of these studies did not include a control group for the proteins (PRO) only. So it is difficult to evaluate whether adding CHO to PRO provides an advantage or not over PRO taken separately. As for the few studies that included a control group for the PRO, the quantity used was sub-optimal and was given in the form of amino acids (46, 48, 50). However, when a control group taking PRO optimally is included in the study, adding CHO to PRO did not show any advantage in terms of lean muscle mass gain (49, 52 to 57). CHO: PRO ratios used in the studies on resistance training varied between 1:1 and 3:1 whereas chocolate milk offers a ratio between 3:1 and 4:1. That is a lot of unnecessary sugar!

In turn, adding CHO to protein supplements can be necessary when several INTENSIVE resistance trainings are planned during the same day. In such a case, the athlete must quickly renew its glycogen stores (58, 59). To this end, 1g/kg of weight of CHO should be added to the proteins and consumed immediately after the training; moreover, a meal should follow 2 hours after the training (59, 60)So you must weigh at least 220 lbs and must train intensely more than once a day to allow yourself a litre of chocolate milk. Even then, you won’t achieve optimal results because of the casein, which constitutes 80% of the total proteins, and because of the 2:1:0.46 (glucose:fructose:galactose) ratio of the various sugars present in the chocolate milk (61).

The fructose contained in chocolate milk comes from high fructose corn syrup (which has a very bad reputation) and from sucrose (1 glucose +1 fructose). In 2004, Bray GA et al. suggested that the obesity epidemic in the United-States was related to the HFCS found everywhere and in large quantities in our nutrition (62). However, the new report published by The International Journal of Obesity, 2015 (63) suggests that this epidemic cannot be linked to HFCS due to the lack of evidence demonstrating that HFCS would be worse than table sugar (sucrose) (63, 64, 65). Yet, chocolate milk contains both of these additives. The fructose contained in almost equal quantities in both these additives could be linked to obesity (66, 67). Some scientists are reluctant to establish such a link (63, 64)A small quantity of fructose consumed every day, such as normal consumption of fruits, is harmless. Unfortunately, fructose is now added in almost all processed food. So it’s easy to exceed the healthy daily quantities of “natural” fructose. The body metabolises fructose differently from glucose. The liver metabolises 70% of the blood fructose (compared to 15 to 30% for the glucose) (38) and will leave the remaining 30% to the other tissues, namely the kidneys, the testicles, the fatty tissues, the brain and the skeletal muscle (69). So the muscles will absorb a negligible amount of fructose (68). A large consumption of fructose can contribute to the development of the metabolic syndrome, consisting in weight gain, increased resistance to insulin, hypertension, and elevated triglyceride in the blood stream (67, 69). High quantities of fructose are also associated to increased cholesterol, LDL particles and visceral obesity (69).

After an intense cardiovascular training, such as a marathon, when the glycogen stores in the liver are low, the fructose present in a sports nutrition supplement will be used to replenish the hepatic stores. Furthermore, for marathon runners performing at high intensities for a long period of time, the intake of fructose in the form of supplements DURING performance at a ratio of 2:1 (glucose/maltodextrin:fructose), offers a definite advantage because it allows faster absorption of sugars through the intestines since different transporters are used for these two sugars. The supplement would also improve gastro-intestinal comfort and would increase these athletes’ performance (70 to 76)If, however, the quantity of fructose consumed is higher than what is needed to replenish the hepatic stores, the surplus could potentially be converted into fat (66). So for people who do resistance training, consuming fructose is of no value. Conclusion? If you need CHO to perform well during your second strength training, you should add glucose/maltodextrin to your whey proteins, in order to avoid consuming fructose unnecessarily.

Finally, at the beginning of 2015, Stuart M. Phillips’ team established that drinking 500ml of chocolate milk every day (18g of proteins) as a supplement, while following a resistance program three times per week over a period of twelve weeks, has no effect on muscle hypertrophy or on strength gain compared to a control group taking no supplements (77).

What about after leisure endurance training?

Many active people do endurance training several times per week such as jogging, spinning, swimming, etc. for one hour. The extent of the muscle and hepatic glycogen loss will vary according to the effort expended. To consume glycogen as a primary source of energy, the level of effort intensity must reach 70% and must be maintained for an extended period of time (4, 5, 78). Laboratory experiments have shown that glycogen stores decline by 50 to 75% after 3 hours of cycling at 70% of VO2max (79, 80). By increasing the effort to 80% of VO2max, you can continue your activity for 2 hours before running out of glycogen. Another example is that the glycogen stores depletion of marathon runners occurs, for 40% of them, around the 34th kilometre, commonly called “the wall”, when they sustain an effort of approximately 80% of VO2max(81, 82, 83) during more than 2h30. Do you think you will be burning as much glycogen during your hour of spinning?

The glycogen stores lost during the training, even if this loss is significant, will be rebuilt through normal nutrition, WITHOUT ANY SUPPLEMENTS, within 24 hours of the training  (84,85). Moreover, the meal frequency will have no incidence if the post-exercise recovery happens over more than 24 hours (85, 86, 87). It is unnecessary for someone coming out of an hour of spinning or jogging to ingest all the added sugars contained in chocolate milk since the subsequent meals will contain sufficient carbohydrates (CHO) to replenish the poorly depleted glycogen stores. Therefore, the person will be ready for the next training a few days later.

Without being Olympic athletes, some people will train intensely and frequently during a week. In such case, the quantity of CHO these people consume every day must be adjusted, spread throughout their meals according to the frequency and intensity of their training. Burke et al. 2011 recommend to take a quantity of CHO every day, depending on the type of training performed (intensity and duration) to allow for a good glycogen resynthesis during the 24 hours following the training (88).

If the objectives of the person doing endurance training don’t include maximum muscular development, the muscle regeneration following an effort, namely the replenishment of glycogen stores, will occur normally with the proteins contained in the subsequent meal, when taken in sufficient quantity.

Supplements are necessary when training sessions are very intense and close together (a few hours) and require to quickly replenish the glycogen stores (in less than 24 hours).

What about high level athletes? (1.3% of the American population are athletes and of which 0.006% are professional athletes) (89).

Although chocolate milk is not intended for Olympic athletes, choosing such athletes as spokesperson to promote chocolate milk as a post-training supplement is almost an obligation; indeed, practically only these athletes could ultimately use chocolate milk as a sports nutrition supplement. Moreover, most studies carried out on the subject are done in a top level training context. But is chocolate milk, as alleged by the television commercials, a good choice for this 1% of the population ?

The purpose of a supplement is to promote fast recovery between two trainings done very close together, mainly by QUICKLY regenerating the glycogen stores. So the muscle glycogen resynthesis speed is important. It was established that this synthesis is faster when CHO are taken right after the training (90, 91, 92) and can be maintained during 6 hours with frequent intake of this supplement (69, 90, 93). Delaying the intake of CHO by 2 hours decreases the resynthesis speed by 50% (16,90). This is particularly important for a fast recovery but is unnecessary for recovery over 24 hours or more (87). OPTIMALLY, the quantity of CHO should be 1.0 to 1.2g/kg of weight/h (94, 95, 96), consumed at 15 to 30 min intervals (97). At this volume and frequency, CHO alone are sufficient to ensure an optimal glycogen synthesis. Sure! But chocolate milk doesn’t only contain CHO!

Is it useful to add proteins to CHO? (98)

To determine which supplement is the best one, we need to compare the different supplements. It is difficult to compare the studies that analyze the effect of adding proteins to a CHO supplement because several variables differ: 1) intensity (% of VO2max) and duration of the first exercise that aims at reducing the glycogen stores 2) choice of exercise (jogging or cycling) 3) various types of supplements consumed (isocaloric or not, as well as the chosen sugars and proteins) 4) control groups used (lack of placebo or other control groups) 5) carbohydrates:protein ratios (CHO:PRO) will vary between 2:1 (Berardi et al. 2006/2008) (99, 100) and 6.2:1 (Betts et al. 2005) (101) 6) duration and intensity of the second performance (% of VO2max).

Nonetheless, it’s possible to draw certain conclusions.

1: Importantly, the drinks studied must be isocaloric (must contain the same amount of calories) :

Some studies show a performance improvement post-recovery when proteins (PRO) are added to CHO versus a control group taking only CHO (102 to 105). However, the quantity of calories between the two drinks was not adjusted, so it wasn’t possible to determine if the performance improvement could be attributed to the addition of proteins or to the aaddition of energy.

2: It is important to compare the CHO+PRO supplement to a control group taking CHO optimally (1.0 to 1.2g/kg of weight/h) AND which is isocaloric:

Some studies show that the addition of proteins to the CHO supplement improves the second performance when compared to a control group taking a CHO only supplement. But this supplement was given sub-optimally during recovery (96, 102, 104, 106, 107). When the control group took the CHO supplement OPTIMALLY, the studies did not show any improvement in the second performance when proteins were added to the mix, even with variable ratios. (95, 96, 101 to 115, 116). A study showed, however, an advantage (100) (see the “Ratio” section).

So the athlete can chose between taking a mix of CHO + PRO, when it is impossible to optimally take a CHO supplement during recovery (1.2g/kg/h every 30 min during 3 to 4 hours) (94, 95, 96, 117). This indeed makes for a lot of CHO to ingest. But at which ratio must the athlete take its proteins?

3: Ratio

Advocates of chocolate milk allege that a ratio of 4:1 is best to support athletic recovery. This belief comes from one of the early studies done on the subject and which showed that a sports nutrition supplement, Endurox R4, containing 4:1 CHO: PRO offered a performance advantage when compared to a control group taking CHO, namely Gatorade (102). However, Endurox R4 contained two and a half times more CHO than Gatorade, in addition to the whey proteins, which gave it almost four times more calories than the Gatorade supplement consumed SUB-OPTIMALLY by the participants. It is obvious that in these conditions, Endurox R4 improved performance compared to Gatorade given the significant difference in CHO and energy consumed between the two drinks. Since the ratio used in this study was 4:1, which is the same as the chocolate milk ratio, the dairy industry took the opportunity to pretend it was the best ratio. Nonetheless, research continued and more recent studies show that ratios containing less sugar are as efficient, if not more, than a 4:1 ratio. Berardi et al. 2008 show an advantage on the second performance with the CHO: PRO mix at a ratio of 2:1 (CHO: 0.8kg/kg/hand PRO: 0.4kg/kg/h), over the control group taking the CHO supplement optimally (100, 117). So why add more sugar than necessary with a ratio of 4:1 if it offers no advantage?

 

Studies done on chocolate milk (McLellan TM et al. 2014 (98)) :

There are 5 major studies comparing chocolate milk to a few other sports drinks during a short term recovery between two performances. (118, 119, 120, 121, 122)

  • None of these 5 studies explained how the chocolate milk taste was reproduced for the control groups. If the athletes know which type of supplement they are given, it can certainly influence the results; in such a case, the study is no longer “blind”.
  • Some studies did not include a placebo or a sub-optimal CHO supplement for the control group (118, 122).
  • 4 studies on 5 did not administer the supplement optimally (118, 119, 120, 121). The fifth study did so for the first recovery hour only (122).
  • Pritchett et al. 2009 show that chocolate milk (3.8:1) offers no advantage for the second performance over Endurox R4 (3.8:1, isocaloric and same quantity of CHO) (118).
  • The other four studies indicated that chocolate milk presented an advantage for the second performance compared to the other drinks studied (119, 120, 121, 122). On the other hand, the studies also present other shortfalls:

For Karp et al. 2006 and Thomas et al. 2009, the glycogen stores reduction protocol was not standardized during the first training(119, 120). That means that the energy expenditure varies a lot from one person to another, even for each individual, from one training session to another. So some groups used more glycogen than others before starting the recovery phase. For Karp et al. 2006 for example, (similar to Thomas et al. 2009), the chocolate milk group (60.8 min) had trained 16% less than the CHO + PRO control group taking Endurox R4 (72.6 min), but equally to the Gatorade group (sub-optimal). These differences can explain the superior performance of the chocolate milk group during the second training. Furthermore, we must report that the study by Karp et al. 2006 was partly financed by the Dairy and Nutrition Council Inc (119).

In the study by Lunn et al. 2012, chocolate milk is compared to a control group taking CHO optimally during the first hour of recovery (122). Despite the fact that the regeneration of the glycogen stores was equal between the two groups, the performance of the chocolate milk group was superior to that of the CHO control group during the second performance (difference of a few seconds). However, the intensity of the second performance was at 100% VO2max and lasted a very short time (203 vs 250 sec). In these very high intensity and very short duration conditions, the more or less important level of muscle glycogen stores before the effort don’t seem to influence performance (123, 124, 125, 126), as opposed to a lower intensity and longer duration performance. So optimally replenishing the glycogen stores is probably not that important in this case. Even the authors admit that the type of test used and the inability to mask the taste of the chocolate milk may have influenced the results. The authors challenge this by emphasizing that the purpose of their study was to show that chocolate milk promotes a better muscle synthesis compared to CHO alone (122). Milk contains proteins whereas the CHO of the control group contained none. So it is not surprising that the results show that chocolate milk increases muscle synthesis. A control group also taking proteins would have certainly given results similar to the chocolate milk, and possibly even better results if whey protein would have been used.

 The study by Furguson-Stegall et al. 2011 compared a chocolate milk ratio smaller than 3:1 to an isocaloric CHO drink and to a placebo (water) (121). The drinks were given sub-optimally. The performance of the chocolate milk group was superior by a few minutes during the second training (40km of cycling) compared to the CHO control group. Nonetheless, the glycogen resynthesis was better with the CHO control group, a result that is slightly contradictory. This study was financed by a Chair established by The National Dairy Council, as well as The National Fluid Milk Processor Promotion Board.

Therefore, the contradictory results, the lack of control groups, the questionable protocols and the inability to obtain blinded studies, do not allow to claim without any doubt that chocolate milk is the best supplement compared to the other supplements studied. The number of serious studies on chocolate milk will have to be considerably larger. Furthermore, these studies will have to be done more independently (not financed by the dairy industry, for example) to achieve more conclusive results.

It should be noted that chocolate milk has not been compared to a supplement offering a ratio of 2:1 previously shown to offer better performances than a CHO supplement taken optimally by Berardi et al. 2008 (100). For comparison purposes, a 200lbs (90kg) man who ingests a supplement offering a ratio of 2:1 will consume 72g of CHO/h instead of 85g/h for a chocolate milk supplement taken optimally. So this represents approximately 40g less of added sugar consumed, during a 3 hour recovery, to achieve the same result, if not better.

The composition of the supplement used by Berardi et al. 2008 is also very different from that of chocolate milk; it contained 33% of maltodextrin, 33% of glucose and 33% of whey (100). So in addition to the ratio, the choice of nutrients is important.

4: CHO

Maltodextrin (MD) seems to be the ideal sugar for muscle glycogen resynthesis after an intense effort. Piehl-Aulin et al. 2000 have shown that a supplement containing very high molecular weight polyglucosides such as maltodextrin would be 25% more efficient for muscle glycogen synthesis than a low molecular weight glucose, maltose or oligomer supplement (127). This would be due to the faster absorption rate of sugars by the intestines, as well as an increased rate of gastric emptying. As seen previously, while the addition of fructose to MD (ratio 2:1, MD: FRU) represents a major advantage DURING a long performance (more than 2h30) such as a marathon(128), it seems that for the rapid muscle glycogen resynthesis between two performances, the addition of fructose or galactose to MD offers no advantage (129). Regarding sucrose (glucose: fructose), no advantage was observed concerning glycogen resynthesis when compared to glucose alone (69, 129, 130, 131, 132), nor during the second performance (129 to 131). Again, we notice that the fructose and galactose portion found in chocolate milk is not useful for the post-training recovery.

5: Proteins

As for strength training, the type of proteins added to the CHO as a post-training supplement is important. However, few studies compare the different types of proteins and their effects on the glycogen resynthesis speed during a short term recovery. Morifuji et al. 2010 have shown, in rats, that adding whey hydrolysate to CHO is more efficient for glycogen synthesis than the CHO control group, followed by non-hydrolysed whey and BCAA. Casein ranked dead last, having no significant effect on glycogen synthesis compared to the intake of glucose alone (133). A large proportion of studies on athletic recovery used hydrolysed or non-hydrolysed whey protein isolate as a source of proteins in their mixes. The advantage over the chocolate milk proteins (mainly consisting of casein) is that in addition to being absorbed faster, the whey protein allows a higher protein concentration mix while restricting the volume to be consumed. It is a non-negligible advantage for the athletes as well as for achieving ratios of 2:1, for example.

Lactose

Milk contains 25g of lactose per 500ml. The capacity to break down lactose into glucose and galactose molecules depends on the presence of the lactase enzyme in the small intestine. “Normally” in humans, the presence or activity of lactase is very strong at the beginning of childhood and starts declining after the child is weaned until it almost disappears in adulthood. The person is then unable to digest lactose for the rest of his or her life (134, 135, 136). Between 65 and 70% of the world population is unable to digest lactose once they reach adulthood (137, 138). So only 30 to 35% of the population can actually digest lactose. Why? During the human evolution, four different mutations occurred, namely a major one that occurred in Europe, which kept the lactase gene active and thus allowing some Caucasians to digest lactose during all their life(137 to 139). These European Caucasians travelled, reached America and gave their descendants the possibility to also carry this mutation. Despite this, approximately 21% of North Americans who have problems digesting lactose are Caucasians (140). The ability to digest lactose is directly linked to the quantity of lactase produced by the intestine (134 to 136) and this quantity varies from one person to another. So some people have more difficulty than others to digest this sugar even though it may not be a true intolerance, rather an incomplete digestion that can sometimes be asymptomatic (140 to 143).

Making up 50% of the sugar contained in chocolate milk, we must seriously question the lactose digestion capacity to quickly regenerate the glycogen stores post-training, if we take into account the differences in the quantities of lactase present in the intestines of each individuals. It was shown that adding sugar (144, 145, 146, 147), fat (147) or chocolate (144, 145) in milk slows down the digestion process. This slowing down certainly promotes a better digestion of the lactose by the lactase present in various amounts, but does make digestion more efficient ? Since it can be very difficult for some people, around the world, to digest lactose, chocolate milk could only be used by a very small portion of athletes, which already represent a tiny portion of the population.

Who promotes chocolate milk?

Besides dairy producers in Quebec and Canada, many nutritionists promote chocolate milk as an ideal post-training supplement. The most relevant comment made to this effect by a nutritionist is the comment from Isabelle Charêt, coach and triple medallist in speed skating at the 1994, 1998 and 2002 winter Olympics (148). She says that chocolate milk would be a lot more useful to people who train intensively: “Someone who goes to the gym three times a week has plenty of time to recover. But I still recommend to drink chocolate milk because people in general don’t drink enough milk.” Ah! But that’s the issue! We have to drink milk!

I will not go into further detail on this subject, but very recently (2013), a team from Harvard University acknowledged publicly the need to decrease to less than two portions per day, or to stop all together, our milk consumption (149, 150). The powerful dairy industry lobby, which represents a third of Quebec’s agriculture and 5 billion dollars of Canadian GDP, imposed itself to maintain the dominant position dairy products hold in the Canadian food guide (151). Nonetheless, the following question remains: is it necessary to include chocolate milk in our diet? Many scientists seem to think that it’s not (149, 150, 151, 152).

Conscious of the extent of the damages caused by the overconsumption of added sugars to human health, how can we encourage the consumption of such sugars just to impose a supplement that is increasingly considered as unnecessary to our health?

Conclusion? If you enjoy a glass of chocolate milk once in a while, as a treat, it’s no big deal! But if milk commercials encourage you to drink one after each of your trainings, and you are not an Olympic athlete (and even then…), I hope you’ll think twice about it.

You know the saying: When it seems too good to be true…

 

References :

1.    http://www.nautilusplus.com/courriel/e-magazine/avril2011/pdf/Chronique_Saputo_fr.pdf

2.    McArdle W, Katch, F & Katch. V. (2001). Carbohydrates, lipids, and proteins. In P. Darcy (Ed.), Exercise physiology (Vol. 5, pp. 11-13). Baltimore, MD: Lippincou Williams & Wilkins.

3.    Charkas A & Golota S. (2014). An intermittent exhaustion of the pool of glycogen in the human organism as a simple universal health promoting mechanism. Medical hypotheses. 82 : 387-389

4.    Romijn JA, Coyle EF, Sidossis et al. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 265, E380-E391.

5.    Holloszy JO & Hohrt WM. Regulation of carbohydrate and fat metabolism during and after exercise. Annu Rev Nutr. 16, 121-138. 1996

6.    Gregory Tardie, Ph.D. U.S. Sports Academy in Sports Coaching, Sports Exercise Science, Sports Studies and Sports Psychology.  http://thesportjournal.org/article/glycogen-replenishment-after-exhaustive-exercise/

7.    Tesch PA, Colliander EB, Kaiser P. (1986). Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 55(4) :362-6

8.    Essen-Gustavsson B, Tesch PA. (1990). Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 61(1-2) :5-10.

9.    Robergs RA, Pearson DR, Costill DL et al. (1991). Muscle glycogenolyse during differing intensities of weight-resistance exercise. J Appl Physiol. 70(4) :1700-1706.

10.    Roy BD, Tarnopolsky MA, MacDougall JD et al. (1997). Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol. 82 :1882-1888

11.    MacDougall JD, Ray S, McCartney N, et al. (1999). Muscle substrate utilization and lactate production during weight lifting. Can J Appl Physiol. 24(3) :209-215.

12.    Haff GG, Koch AJ, Potteiger JA, Kuphal KE, et al. (2000). Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab. 10 : 326-339.

13.    Phillips SM, Tipton KD, Aarsland A et al. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in human. Am J Physiol. 273 :E99-E107.

14.    Tipton KD, Ferrando AA, Phillips SM et al. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 276 : E628-E634.

15.    Rasmussen BB, Tipon KD, Miller SE, Wolf RR. (2000). An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 88 :386-392.

16.    Levenhagen DK, Gresham JD, Carlson MG et al (2001). Post-exercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 280, E982-E993

17.    Esmarck B, Andersen JL, Olsen S et al. (2001). Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 15 :535 :301-11

18.    Tipton KD, Rasmussen BB, Miller SL et al. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 281 : E197-E206

19.    Borsheim E, Tipton KD, Wolf SE, Wolfe RR(2002). Essential amino acid and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 283 :48-57

20.    Lemon PW, Berardi JM, Noreen EE. (2002). The role of protein and amino acid supplements in the athlete’s diet : does timing of ingestion matter ? Curr Sport Med Rep. 1(4) :214-221.

21.    Volek JS. (2004). Influence of nutrition on responses to resistance training. Med Sci Sports Exer. 36 :689-96

22.    Cribb PJ, Hayes A. (2006). Effect of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sport Exerc. 38 :1918-1925.

23.    Wilkinson S, Tarnopolsky M, MacDonald M, et al. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 85 (4) :1031-40

24.    Hartman J, Tang JE, Wilkinson S, Tarnopolsky M, et al. (2007). Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male, weightlifters. Am J Clin Nutr. 86 (2) :373-81

25.    Moore DR, Robinson MJ, Fry JL, Tang JE, et al.(2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 89(1):161-8.

26.    Tang JE, Moore DR, Kujbida G, Tarnopolsky M, Phillips S. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate : effect on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol .107(3) :987-92.

27.    West DW, Burd NA, Coffey VG et al. (2011) Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signalling responses after resistance exercise. Am J Clin Nutr. 94 : 795-803.

28.    Burd N, Yan Y, Moore DR, Tang JE, et al. (2012). Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in eldery men. Br J Nutr. 108 :958-62.

29.    Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, et al. (2012). Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 1;590(Pt 11):2751-65.

30.    Churchward-Venn TA, Burd NA, Phillips SM et al. (2012). Nutritional regulation of muscle protein synthesis with resistance exercise : strategies to enhance anabolism. Nutr Metab. 9 :40.

31.    Tipton KD, Phillips SM. (2013). Dietary protein for muscle hypertrophy. Nestlé Nutr Inst Workshop Ser. Vol 76 :73-84

32.    Mori H. (2014). Effect of timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men. J Physiol Anthropol. 33 :24

33.    Witard OC, Jackman SR, Breen L, et al. (2014). Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 99(1):86-95

34.    Schoenfeld BJ, Aragon AA Krieger JW. (2013). The effect of protein timing on muscle strength and hypertrophy : a meta-analysis. J Int Soc Sports Nutr. 10(1):53.

35.    Aragon AA, Schoenfeld BJ. (2013) Nutrient timing revisited : is there a post-exercise anabolic window ? J Int Soc Sports Nutr. 10 (1):10-15.

36.    Churchward-Venne T, Breen L, Di Donato D et al. (2014). Leucine supplementation of a low protein mixed macronutriment beverage enhances myofibrillar protein synthesis in young men : a double-blind, randomized trial. Am J Clin Nutr. 99(2) :276-86.

37.    Devries MC & Phillips SM. (2015). Supplemental protein in support of muscle mass and health : Advantage Whey. Journal of Food Science. Vol 80, S1.

38.    Cribb PJ, Williams AD, Hayes A, Carey MF. (2006). The effect of whey isolate on strength, body composition and plasma glutamine. Int J Sport Nutr exer Metab. 16 :494-509.

39.    Koopman R., Crombach N., Gijsen, A.P., Walrand, S et al. (2009). Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am J Clin Nutr. 90. 106-115.

40.    Penning B, Boirie Y, Senden J, Gijsen A, Kuipers H, van Loon L. (2011). Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older man. Am J Clin Nutr. 93(5) :997-1005

41.    Boirie Y, Dangin M, Gachon P, Vasson M, et al. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Nath Acad, Sci USA. 94 :14930-5.

42.    Mahe S, Roos N, Benamouzig R, Davin, L, et al. (1996). Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr. 63: 546–552.

43.    Bos C, Metges CG, C, Petzke K, et al. (2003). Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 133 :1308-15

44.    Yang Y, Churchward-Venn T, Burd N, Breen L, et al. (2012). Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab. (Lond) 9 :57

45.    Volek JS, Volk BM, Gómez AL, et al. (2013). Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr. 32(2):122-35

46.    Miller SL, Tipton KD, Chinkes DL et al. (2003) Independent and combined effect of amino acids and glucose after resistance exercise. Med. Sci Sports Exerc. (35); 3 :449-455

47.    Børsheim E, Cree MG, Tipton KD, et al. (2004) Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol. (1985). 96(2): 674-8.

48.    Bird SP, Tarpenning KM, Marino FE. (2006). Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men. Eur J Appl Physiol. 97(2) :225-38.

49.    Glynn EL, Fry CS, Drummond MJ et al. (2010). Muscle protein break-down has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol. 299 : R533-40.

50.    Rasmussen BB, Phillips SM. (2003). Contractile and nutritional regulation of human muscle growth. Exerc Sport Sci Rev. 31 :127-131.

51.    Borsheim E, Aarsland A, Wolfe RR. (2004). Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport Nutr Exerc Metab. Jun;14(3):255-71.

52.    Cribb PJ, Williams AD, Hayes A. (2007). Creatine-protein-carbohydrate supplement enhance response to resistance training. Med Sci Sport Exerc. 39 :1960-8.

53.    Koopman R, Beelen M, Stellingwerff T, Pennings B, et al. (2007). Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab. 293(3) :E833-E842.

54.    Staples AW, Burd NA, West DW, Currie KD, et al. (2011). Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 43(7) :1154-1161.

55.    Glynn EL, Fry CS, Timmerman KL, Drummond MJ, Volpi E, Rasmussen BB. (2013). Addition of carbohydrate or alanine to an essential amino acid mixture does not enhance skeletal muscle protein anabolism. J Nutr. 143(3) :307-314.

56.    Gorissen SHM, Burd NA, Henrike M et al. (2014). Carbohydrate coingestion delays dietary protein digestion and absorption but does not modulate prostprandial muscle protein accretion. J Clin Endocrinol Metab. 99(6) :2250-2258.

57.    Pasiakos SM, McLellan TM, Lieberman HR. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults : A systematics review. Sports Med. 45 :111-131.

58.    Pascoe DD, Costill DL, Fink WJ et al. (1993). Glycogen resynthesis in skeletal muscle following resistive exercise, Med Sci Sports Exerc. 25 :349-354.

59.    Roy BD, Tarnopolsky. (1998). Influence of different macronutrient intakes on muscle glycogen resynthesis after resistance exercise. J Appl Physiol. 72 :1854-1859.

60.    Ivy JL, Ferguson LM. (2010). Optimizing Resistance exercise Adaptations through the timing of post-exercise Carbohydrate-protein supplementation. Strength and Conditioning Journal. Vol 32, No1, 30-36.

61.    http://voluntocracy.org/Fructose/

62.    Bray GA, Nielsen SJ, Popkin BM. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 79(4):537-43.

63.    White JS , Hobbs LJand Fernandez S. (2015). Fructose content and composition of commercial HFCS-sweetened carbonated beverages. International Journal of Obesity. 39, 176–182

64.    Moeller SM, Fryhofer SA, Osbahr AJ 3rd,et al. (2009). The effect of high fructose syrup. J Am Coll Nutr. 28(6) :619-626

65.    White JS. (2008). Straight talk about high-fructose corn syrup : what it is and what it ain’t. Am J Clin Nutr. 88 (suppl) :1716S-21S.

66.    Parks EJ, Skojan LE, Timlin MT et al. (2008). Dietary sugars stimulate fatty acid synthesis in adults. J Nutr. 138 :1039-46.

67.    Tappy L, Lê KA, Tran C, Paquot N. (2010) Fructose and metabolic diseases : New finding, new questions. Nutrition. 26 : 1044-1049.

68.    Kolderup A & Svihus B (2015). Fructose Metabolism and Relation to Atherosclerosis, Type 2 Diabetes, and Obesity. Journal of Nutrition and Metabolism. 1-12

69.    Charrez B, Qiao L and Hebbard L. (2015) The role of fructose in metabolism and cancer. Horm Mol Biol Clin Invest. 22(2): 79–89

70.    Jentjens RL, Moseley L, Waring RH et al. (2004). Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 96 :1277-1284.

71.    Jeukendrup AE, moseley L, Mainwaring GI et al. (2006). Exogenus carbohydrate oxidation during ultra endurance exercise. J Appl Physiol. 100 :1134-41.

72.    Rowlands DS, Thorburn MS, Thorp RM et al. (2008). Effect of graded fructose coingestion with maltodextrine on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 104 :1709-1719.

73.    Currell K & Jeukendrup AE. (2008). Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 40 :275-281.

74.    O’Brien WJ, Rowlands DS. (2011). Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrintest Liver Physiol. 300: G181-G189

75.    Jeukendrup AE. (2013). Multiple transportable carbohydrates and their benefits. Sports Sci Exchange. 26 (108) : 1-5

76.    Robert JD, Tarpey MD, Kass LS, et al. (2014). Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. Journal International Society Sports Nutrition. 11 ;8 : 1-14

77.    Mitchell CJ, Oikawa SY, Ogborn DI, Nates NJ, et al. (2015). Daily chocolate milk consumption does not enhance the effect of resistance training in young and old man : a randomized controlled trial. Appl. Physiol. Nutr. Metab. 40 : 1-4

78.    Hultman E & Sjöholm H. (1983). Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol. 345 : 525-32

79.    Bosch AN, Dennis SC & Noakes TD (1994). Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. Journal of Applied Physiology (Bethesda, Md.), 76(6). 2364-2372.

80.    Bosch AN, Weltan SM, Dennis SC & Noakes TD. ( 1996). Fuel substrate turnover and oxidation and glycogen sparing with carbohydrate ingestion in non-carbohydrate- loaded cyclists. Pflugers Archiv. 432(6), 1003-1010.

81.    Buman MP, Brewer BW, Cornelius AE et al. (2008). Hitting the wall in the marathon : Phenomenological characteristics and associations with expectancy, gender, and running history. Psychol Sports Exerc. 9 :177-190.

82.    Buman MP, Brewer BW, Cornelius AE. (2009). A discrete-time hazard model of hitting the wall in recreational marathon runners. Psychol Sports Exerc. 10 :662-666.

83.    Rapoport BI. (2010). Metabolic factors limiting performance in marathon runners. PLOS Computational Biology. 6: 10: 1-13.

84.    Burke LM, Collier GR, Beasley SK, et al. (1995). Effect of coingestion of fat and protein with carbohydrate feeding on muscle glycogen storage. J Appl Physiol (1985). 78(6):2187-2192.

85.    Costill DL, Sherman WM, Fink WJ et al. (1981). The role of dietary carbohydrate in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 34 :1831-36.

86.    Burke LM, Collier GR, Davis PG et al. (1996). Muscle glycogen storage after prolonged exercise : effect of the frequency of carbohydrate feedings. Am J Clin Nutr. 64 :115-119.

87.    Parkin JAM, Carey MF, Martin IK et al. (1997). Muscle glycogen storage following prolonged exercise : effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 29 :220-224.

88.    Burke LM, Hawley JA, Wong SH, et al. (2011). Carbohydrates for training and competition. J Sports Sci. 29(suppl. 1), S17-S27.

89.    http://www.answers.com/Q/What_percentage_of_the_US_population_are_professional_athletes,

90.    Ivy JL, Katz AL, Cutler CL et al. (1998). Muscle glycogen synthesis after exercise : Effect of time of carbohydrate ingestion. J Appl Physiol. 64,1480-1458.

91.    Price TB, Rothman DL, Taylor R et al. (1994), Human muscle glycogen resynthesis after exercise : insulin-dependent and –independent phases. J Appl Physiol. 76, 104-111.

92.    Fallowfield JL, Williams C, Singh R. (1995). The influence of ingesting a carbohydrate-electrolyte beverage during 4h of recovery on subsequent endurance capacity. Int J Sport Nutr Exerc Metab. 5 :285-99

93.    Ivy JL, Lee MC, Brozinick JT et al. (1988). Muscle glycogen storage after different amount of carbohydrate ingestion. J Appl Physiol. 65, 2018-2023

94.    Ivy JI. (2001). Dietary strategies to promote glycogen synthesis after exercise. Can J Appl Physiol. 26(Suppl.) S236-S245.

95.    Jentjens RL, van Loon LJ, Mann CH et al. (2001) Addition of protein and amino acids to carbohydrate does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 91,839-846.

96.    van Loon LJ, Saris WH, Kruijshoop M, et al. (2000) Maximazing postexercise glycogen synthesis : carbohydrate supplementation and the application of amino acids or protein hydrolysate mixtures. Am J Clin Nutr. 72, 106-111

97.    Jentjens R, & Jeukendrup A. (2003). Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Médicine (Auckland N.Z.). 33(2). 117-144.

98.    McLellan TM, Pasiakos SM, Lieberman HR. (2014). Effect of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance : a systematic review. Sports Med. 44 :353-550.

99.    Berardi JM, Price TB’ Noreen EE, et al. (2006). Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sport Exerc. 38 :1106-13.

100.    Berardi JM, Noreen EE, Lemon PWR. (2008). Recovery from a cycling time trial is enhanced with carbohydrate protein supplementation vs isoenergetic carbohydrate supplementation. J Int Soc Sports Nutr. 5 :24.

101.    Betts JA, Stevenson E, Williams C, et al. (2005). Recovery of endurance running capacity : effect of carbohydrate-protein mixtures. Int J Sport Nutr Exerc Metab. 15 :590-609.

102.    Williams MB, Raven PR, Fogt DL, et al. (2003). Effects of recovery beverage on glycogen restoration and endurance exercise performance. J strength Cond Res. 17 :12-9.

103.    Ivy JI, Res PT, Sprague RC, et al. (2003). Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr exerc Metab. 13 :382-95.

104.    Saunders MJ, Kane MD, Todd KM. (2004). Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sports Exerc. 36 :1233-8

105.    Saunders MJ, Luden ND, Herrick JE. (2007) Consumption of an oral carbohydrate-protein gel, improves cycling endurance and prevents post-exercise muscle damage. J Strength Cond Res. 21 :378-84.

106.    Zawadzki KM, Yaspelkis BB, Ivy JL (1992) Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 72,1854-1859.

107.    Ivy JI, Goforth HW, Damon BM, et al. (2002). Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 93 :1337-44.

108.    van Hall G, Shirreffs AM, Calbert JAL (2000) Muscle glycogen resynthesis during recovery from cycle exercise : no effect of additional protein ingestion. J Appl Physiol. 88, 1631-1636

109.    Carrithers JA, Williamson DL, Gallagher PM et al. (2000) Effects of postexercise carbohydrate-protein feeding on muscle glycogen restoration. J Appl Physiol. 88, 1976-1982

110.    Romano-Ely BC, Todd MK, Saunders MJ et al. (2006).  Effect of an isocaloric carbohydrate-protein-antioxydant drink on cycling performance. Med Sci Sports Exerc. 38 :1608-16.

111.    Betts J, Williams C, Duffy K, et al. (2007). The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sci. 25 :1449-60,

112.    Millard-Stafford M, Warren GL, Thomas LM, et al. (2005). Recovery from run training : efficacy of carbohydrate-protein beverage ? Int J Sport Nutr Exerc Metab. 15 :610-24.

113.    Rowlands DS, Thorp RM, Rossler K, et al. (2007). Effect of protein-rich feeding on recovery after intense exercise. Int J Sport Nutr Exerc Metab. 17 :521-43.

114.    Rowlands DS, Rössler K, Thorp RM, et al. (2008). Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab. 33 :39-51.

115.    Howarth, K.R., Moreau, N.A., Phillips, S.M., & Gibala, M.J. (2009). Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. Journal of Applied Physiology {Bethesda, Md.), 106(4), 1394-1402.

116.    Rowlands DS, Wadsworth DP. (2011). Effect of high-protein feeding on performance and nitrogen balance in female cyclist. Med Sci Sport Exerc. 43 :44-53.

117.    Beelen M, Cermak NM, van Loon LJ, (2015). Performance enhancement by carbohydrate intake during sport : effects of carbohydrate during and after high-intensity exercise. Ned Tijdschr Geneeskd. 159(0) :A7465.

118.    Pritchett K, Bishop P, Pritchett R, et al. (2009) Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Appl Physiol Nutr Metab. 34 :1017-22.

119.    Karp JR, Johnson JD, Tecklenburg S, et al. (2006). Chocolate milk as a post-exercise recovery aid. Int J Sport Nutr Exerc Metab. 16 :78-91.

120.    Thomas K, Morris P, Stevenson E. (2009). Improved endurance capacity following chocolate sport drinks. Appl Physiol Nutr Metab. 34 :78-82.

121.    Ferguson-Stegall L, Mc Cleave EL, Ding Z, et al. (2011). Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signalling for protein synthesis. J Strength Cond Res. 25 :2110-1224.

122.    Lunn WR, pasiakos SM, Colletto MR et al. (2012). Chocolate milk and endurance exercise recovery : protein balance, glycogen, and performance. Med Sci Sports Exerc. 44 :682-91.

123.    Sahlin K, Broberg S, Katz A. (1989). Glucose formation in human skeletal muscle. Influence of glycogen content. Biochem J. 258 :911-913.

124.    Ren JM, Gulve EA, Cartee GD et al. (1990). Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiol Scand. 139 :467-474.

125.    Spriet LL, Berardinucci L, Marsh DR et al. (1990). Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation. J Appl Physiol. 68 :1883-1888.

126.    Spencer MK & Katz A. (1991). Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am J Physiol. 260 :E859-E864.

127.    Piehl-Aulin K, Söderlund K, Hultman E (2000) Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 81, 346-351.

128.    Rowlands DS, Swift M, Ros M et al. (2012). Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 37 :425-36

129.    Wallis GA, Wittekind A. (2013). Is there a specific role for sucrose in sports and exercise performance? Int J Sport Nutr Exerc Metab. 23(6):571-83

130.    Moriarty KT, Mcintyre DG, Bingham K et al. (1994). Glycogen resynthesis in liver and muscle after exercise : measurement of rate of resynthesis by 13C magnetic resonance spectroscopy. Magma. 2 :429-432.

131.    Casey A, Mann R, Banister et al. (2000). Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by 13C MRS. Am J Physiol Endocrinol Metab. 278, E65-E75.

132.    Bowtell JL, Gelly K, Jackman ML et al. (2000). Effect of different carbohydrate drinks on whole body carbohydrate storage after exhaustive exercise. J Appl Physiol. (1985). 88(5) :1529-1536.

133.    Morifuji M, Kanda A, Koga J, et al. (2010) Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats. Amino Acids. 38, 1109-1115.

134.    Sahi T (1994). Genetics and epidemiology of adult-type hypolactasia. Scand J Gastroenterol. 29 Suppl202:7-20.

135.    Evidence Report/Technology Assessment Number 192. (2010). Lactose intolerance and health. AHRQ Publication No. 10-E004

136.    Rienzo TD, D’Angelo G, D’Aversa F, et al. (2013). Lactose intolerance: from diagnosis to correct management. Eur Rev Med Pharmacol Sci. 17(Suppl2):18-25.

137.    Ingram CJE, Mulcare CA, Itan Y, Thomas MG, Swallow DM. (2009). Lactose digestion and the evolutionary genetics of lactase persistance. Hum. Gen. 124, 579-591.

138.    Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG. (2010). A worldwide correlation of lactase persistance phenotype and genotype. BMC Evol. Biol. 10, 36.

139.    TishkoV SA, Reed FA, Ranciaro A, Voight BF, et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 39:31– 40

140.    Scrimshaw NS, Murray EB. (1988). The acceptability of milk and milk products in populations with high prevalence of lactose intolerance. Am J Clin Nutr. 48(Suppl):1079-1159

141.    Rosado JL, Allen LH, Solomons NW. (1987). Milk consumption, symptoms response and lactose digestion in milk intolerance. Am J Clin Nutr. 45:1457-1460

142.    Carraccio A, Montalto G, Cavera G, Notarbatolo A. (1998). Lactose intolerance and self-reported milk intolerance: Relationship with lactose maldigestion and nutrient intake. J Am Coll Nutr. 17:631- 636

143.    Peuhkuri K, Teuri U, Vapaatalo H, Korpela R. (2000). Lactose intolerance – a confusing clinical diagnosis. Am J Clin Nutr. 71:600-602

144.    Welsh JD, Hall WH. (1977) Gastric emptying of lactose and milk in subjects with lactose malabsorption. Dig Dis. 22:1060-1063.

145.    Dehkordi N, Rao DR, Warred AP, Chawan CB. (1995). Lactose malabsorption as influenced by chocolate milk, skim milk, sucrose, whole milk, and lactic cultures. J Am Diet Assoc. 95:484-486.

146.    Vesa TH, Marteau P, Briet FB, Flourie B, et al. (1997). Effects of milk viscosity on gastric emptying and lactose intolerance in lactose maldigesters. Am J Clin Nutr. 66:123-126.

147.    Vesa TH, Marteau PR, Briet FB, Boutron-Ruault MC, Rambaud J-C. (1997). Raising milk energy content retards gastric emptying of lactose in lactose intolerant humans with little effect on lactose digestion. J Nutr. 127:2316-2320.

148.    La Presse, 22 juillet 2008, par Stéphane Champagne d’Isabelle Charêt. http://www.lapresse.ca/vivre/200809/08/01-651558-la-face-cachee-du-lait-au-chocolat.php

149.     Ludwing DS & Willet WC. (2013) Three daily serving of reduced-fat milk, an evidence-base recommendation ? JAMA Pediatr. 167(9) :788-789

150.    Davis C. (Dep. of Nutr. Harvard School of public health). (2010). Comment on report of the Dietary guidelines advisory committee on the dietary guideline for américans,

151.    L’épicerie. Épisode 5, 29 octobre 2014. http://ici.tou.tv/l-epicerie/S2014E05?lectureauto=1

152.    Lagacé-Simard, Jacqueline. Ph.D. (2011). Comment j’ai vaincu la douleur et l’inflammation chronique par l’alimentation. Montréal, Québec : Fides